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Abstract 

 
  In this paper we are concerned with time-varying optimal control problems 

whose cost is quadratic and whose state is a differential equation and with general 
boundary conditions. The basic new idea of this paper is to propose a primal-dual 
augmented Lagrangian method, embedded with a sequential quadratic 
programming(SQP) for the solution of such problems.The benefit of this approach is 
that the quality of the dual variables is monitored explicitly during the solution of the 
subproblem. Moreover, the formulation of a penalized matrix in the primal-dual 
variables with mesh-refinement strategy guarantees the reliability of the algorithm. 
Numerical experiments verify the efficiency of the proposed method.  
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1.0    Introduction 
 

Linear quadratic(LQ) control problems are very important in optimal control. They have many applications, e.g 
network theory, stability theory, filtering and estimation. There is an extensive body of literature on the study of the 
stability and the existence of its controller for both linear time-invariant(LTI) and linear time-variant(LTV) systems[1-3]. 
The contrast is particularly sharp while there is a few papers on numerical solutions of the controller, especially for time 
varying systems. The point is how to integrate the nonlinear matrix differential Riccati equation with variable coefficient 
accurately and efficiently. Since Chen and Shih tried to solve the optimal controller by introducing Walsh function[4] to 
discretize the continuous LTV system, many researchers extended the methodology to block pulse function and segmental 
linear functions[5]. 

Birgit[6] considered time-varying linear systems on Hilbert spaces and studied the optimal control problem with 
indefinite performance criteria over a finite horizon by applying an operator theoretic approach for the unique solvability 
of the linear quadratic optimization and for the existence of solutions to the integral Riccati equation. Thus, solving the 
time-dependent, matrix Riccati differential equation computationally remains eminent. Based on the conservative 
property of the optimal control system of state space, Tan and Zhong[5] developed a symplectic conservative perturbation 
algorithm, which circumvents solving the continuous time-dependent matrix Riccati differential equation, for solving 
linear quadratic control with time-varying systems. Since the algorithm is based on perturbation of the LTV systems, 
there is need to develop algorithm that will solve the time-dependent matrix Riccati equation directly. Variational 
iteration method(VIM) was applied to the solution of the general Riccati differential equation by Batiha et al[7]. The 
approximate analytical method only considered the initial value problem(IVP) of the Riccati differential equation, as to 
the terminal value problem(TVP) obtained in the optimal control system of state space. Dai and Cochran[8] applied the 
nonlinear programming(NLP) solver to the nonlinear programming problem obtained by using the Haar wavelet 
technique to transform the state and control variables into nonlinear programming parameters at collocations points. The 
algorithm is based on the inexact step-size calculation, which affects the convergence of the method[9]. As a result of the 
development of control operator, which ensures exact computation of the step size in the line search parameter, for LTI 
systems[3], Olotu and Adekunle[9] developed a discretized continuous algorithm via quadratic programming through 
quadratic penalty function method for the solution of optimal control of time-invariant system and delay differential 
equations[10]. The algorithm is robust and efficient for LTI, but suffers from the inherent ill-conditioning and slow-
convergence of the quadratic penalty function method as a nonlinear programming algorithm[11]. 

A new penalty function method for constrained optimization, which is amenable to both equality and inequality  
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constrained, has been developed by Barry and Dimitri[12]. Also, a primal-dual generalization of the Hestenes-Powell 
augmented Lagrangian function is discussed extensively as subproblem formulation of nonlinear constrained optimization 
problem by Gill and Robinson [13]. Since the primal-dual augmented-Lagrangian exhibits fast convergence[11] and has 
been successfully applied to optimal control of large scale dynamical systems[14], it is of interest incorporating the new 
penalty function method and the primal-dual augmented Lagrangian in the discretized continuous algorithm via quadratic 
programming and see how it works. Furthermore, mostly real systems are nonlinear and time dependent, numerical 
solutions of linear quadratic(LQ) control for time varying systems are very important, which deserve further study. 

In this paper, the discretized continuous algorithm via quadratic programming technique[9] is extended to optimal 
control of time-varying systems. In the proposed algorithm, the optimal control problem is discretized and through the 
construction of penalized matrix in both the primal and dual variables , the optimal control problem becomes large sparse 
quadratic programming problem. The effectiveness and robustness of the control method is demonstrated by simulation 
studies of two examples . 

 

2.0  Method of Solution 

 Consider the linear time-varying(LTV) system:  
 ����� � �������� � 	���
���,                ���� � �. (2.1) 

 The quadratic performance index is given as  

 ��
� � �� �  
���� �������� � 
�����
���,   (2.2) 

 where ����, 	���, ����, and ���� are � � �, � � �, � � �, and � � � continuous or piecewise continuous matrix time 
functions respectively. For ��  ��, �!�, ���� " 0, ���� $ 0, symmetric and the end time �! is fixed. The state ���� and 
control 
��� are � %vector and � %vector respectively. 

The LQ control problems are to find the control input 
��� to minimize the performance index (2.2) subjected to 
the dynamic equation(2.1). First we partition the interval ��, �!� into s sub-intervals with knots � & �� & �� ' & �( and �) � � � *∆�), where ∆�) is the mesh size of *�+ sub-interval . If these sub-intervals are small enough, we can assume 
that at any collocation point, the values ���� and 
��� can be approximated by zero order spline �) and 
) respectively. 

Applying trapezoidal discretization for , grid points to the optimal control problem(2.1) and (2.2), we have  
 min��
� � ∑  

()1 ��)2�� 3��)2���)2� � �)�3��)��) � 
)2�� 4��)2��
)2� � 
)�4��)�
)� (2.3) 
 subject to  

 �56�6 % ∆�7� ���)2����)2� % �56�6 � ∆�7� ���)���) % ∆�7� �	��)2��
)2� � 	��)�
)� � 8 (2.4) 

 where 3��)� � ���)� ∆�79 , 4��)� � ���)� ∆�79 , and 56�6 is � � � identity matrix . 

By parameter optimization[9, 15], the discretized problem becomes a large sparse quadratic programming 
problem. We give a matrix representation  

 min��:� � ;�<; � = (2.5) 
 subject to  

 >; � ? (2.6) 
 and  

 ;� � ���� , ��� , ' , �(� , 
� , 
�� , 
�� ' , 
(�� (2.7) 
 where < is a block diagonal matrix of order �� � ��, � �, with entries given by:  

 �<�@@ �
ABC
BD23��@�,        F � 1,2, ' , , % 13��@�,        F � ,,4��@�,        F � , � 1,24��@�,        F � , � 2, ' ,2,,4��@�,        F � 2, � 1.

H 
where F�+ element corresponds to F�+ block, and = � �)��0�3����)�0�. The matrix > is block matrix of order �, � �� ���, � � with the representation  

 > � �I J K�, (2.8) 

 where I is an �, � �, block bidiagonal matrix with principal block diagonal elements �I@@� � 56�6 % ∆�7� ���@� and 

lower block principal diagonal elements �I@L� � % M56�6 � ∆�7� ���@N��O, �F, P block such that F � P � 1.The matrix K is 

an �, � �, � 1�� block bidiagonal matrix with principal block diagonal elements �K�@@ � % ∆�7� 	��@N�� and upper block 

principal diagonal elements �K@L� � % ∆�7� 	��L�, �F, P block such that P � F � 1. The column vector ? is of order �, � 1 

with entries given by; �?��:R,� � �56�6 � ∆�7� ������ and �?@,�� � 0, F � � � 1, � � 2, ' , �,. 
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Given S  TR(, SU  TR(, and V $ 0, then by the primal-dual augmented Lagrangian method, the unconstrained 
minimization problem of the discretized optimal control problem(2.5) and (2.6) is  

min;,S W�;, S; SU , V, Y� � ;�<; � = � Z[��>; % ?�@��SU � 12V \>; % ?\� � 12V \>; % ? � V�S % SU�\�, 
                                                                                                 (2.9) 
 where Z[ is a real valued function of a single variable, depending on a positive parameter Y satisfying the following 
properties[12]  

 

�W1�:     Z�0� � 0,�W2�:     Z′�0� � 0,�W3�:     lim�_∞Z′��� � �∞,
�W4�:     lim�_N∞Z′��� � %∞,
�W5�:     Z′′��� $ 0        ��  T\c0d,�W6�:     Z′′�0� � 1        ��  T.

 

Examples of such functions are Z��� � �f
� , 

gh2gihN�� , and 
�� ��f

� � j� % ��. For Y $ 0 define Z[��� � YZ��[�. 

On expansion, we have  
 min;,S Wk�;, S� � ;��k; � VS�5R(�R(S � 	k; � 	kl S � m (2.10) 

 Equation (2.10) is the quadratic form representation in both ; and S for the unconstrained minimization problem(2.9), 

where Wk�;, S� is primal-dual augmented Lagrangian, V is penalty parameter, the penalized matrix �k � n< � �k >�>o, 
	k � S�> % �k ?�> % SU�>, and 	kl � %VSU� % ?� and m � = � Z[�SU � �k ?�? � �?� � 2VSU��SU. Let the �,-vector 

p�;� � SU % �k �>; % ?�, then the gradient and Hessian for W�;, S� may be written as  

 qW�;, S� � r2<; � SU�Z[′ ��>; % ?�@�q�>; % ?�@ � s��S % SU�V�S % p�;�� t, (2.11) 

  

 q�W�;, S� � r2< � SU�Z[′′q�>; % ?�@ � SU�Z[′ q��>; % ?�@ � K�S % SU� s�s V5R(�R(t, (2.12) 

 where s�;� and K�;� is the Jacobian and Hessian matrices of m�;� � >; % ? with appropriate dimensions. Observe that 

the first-order multipliers p�;� � SU % �k �>; % ?� minimize W�;, S� with respect to S for fixed values of ;. 

 
Theorem 2.1  Assume that �ul, vl� satisfies the following conditions associated with problem(2.10):   

    (i)   m�;l� � 0,  
    (ii)  <;l � 0,  
    (iii)  there exists a positive scalar w such that x�y�;l, Sl�x " w\x\� for all x satisfying ��;l�x � 0.  
 Then �;l, Sl� is a stationary point of the primal-dual function  

W�;, S; Sl, V, Y� � ;�<; � = � Z[��>; % ?�@��Sl � 12V \>; % ?\� � 12V \>; % ? � V�S % Sl�\�. 
 Proof. We must show that qW is zero and q�W is positive definite at the primal-dual point �;, S� � �;l, Sl�. 

Assumption �F� and the definition p�;� � Sl % �k �>; % ?� implies that p�;l� � Sl. Substituting for p, ; and S in the 

gradient(2.11) and using the assumptions W2 and �FF�, gives qW�;l, Sl; Sl, V�=0 directly. 
Similarly, the Hessian(2.12) becomes  

 q�W�;l, Sl� � r< 00 V5R(�R(t. (2.13) 

 It is sufficient to show that < is positive definite. By definition it is easily seen that < is positive definite and hence q�W 
is positive definite.  

 Theorem(2.1) indicates that if an estimate of Sl is known for problem(2.9), then an approximate minimization 
of W with respect to both ; and S is likely to provide an even better estimate. 
Lemma 2.1 ([9])  Let z��)�  {��R2|�(2|����R2|�(2|� be a symmetric positive definite matrix, let }��)�  {�R(����R2|�(2|�,V $ 0, and let ~j�z � ~j�} � 8. Then the penalized matrix �k��)� is positive definite.  
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Lemma 2.2 ([9])  Let z��)�  {��R2|�(2|����R2|�(2|� be a symmetric positive definite matrix, let }��)�  {�R(����R2|�(2|�,� $ 0 such that  

 ;���)�<;��)� " �\;��)�\, ;��)�  ~j�< 
Then �k is positive definite for sufficiently large V.  

 The lemmas ensure the sufficient condition for ;l��)�  {��R2|�(2|� to a be local minimum point. Hence, the 
sequential minimization problem(2.10) for a fixed set values of S� and a sequence of values Y) _ 0 behaves like the 
classical Hestenes-Powell augmented Lagrangian method. Also for V) _ 0, the discretized problem(2.10) yields the 
primal-dual quadratic penalty function method . Thus, when V) _ 0 and Y) _ 0, we have the primal-dual augmented 
Lagrangian method. Then our formulation is a combination of three robust and efficient techniques. 

Our aim is to solve the unconstrained minimization equation(2.10) by conjugate gradient algorithm in the inner 
loop and enforce the feasibility condition in the outer loop in both the primal and the dual variables and reduce the 
discretization error. 

 

3.O  Algorithm of The Scheme 
 In this section, we are proposing an algorithm on the basis of the above discussions. This algorithm is based on 

the sequential minimization in both the primal and the dual variables using the conjugate gradient algorithm[3, 9], as 
stated below: 

 
 Algorithm  4.1: A Primal-Dual Algorithm for Constrained Optimal Control Problem 
Step 1. Set * � 0 and choose Y $ 0, V  �0,1�, and m $ 1. Initialize S�U,�, S,  TR( and ;,  T�R2|�(2|. With S 
fixed. 
Step 2. Set F � 0 and set x � %� � %qWk7,[7�;,�. 

Step 3. Compute �@ � ������������ 
Step 4. Set ;),@2� � ;),@ � �@x@ 
Step 5. Compute qWk7,[7�;),@2�� 
Step 6. If qWk7,[7�;),@2�� � 0 and >;),@2� � ?, go to step 8b ;else go to step 7.  
Step 7a. If qWk7,[7�;),@2�� � 0, set  �@2� � qWk7 ,[7�;),@2��,  

x@2� � %�@2� � �@x@, with �@ � ����� ���������  

Step 7b. Set F � F � 1, and go to step 3. 
Step 8a. Else if >;),@2� � ?, 
Step 8b. With ;),@ fixed, set P � 0 and set xl � %�l � %qWk7,[7�S,�. 

Step 8c. Compute �Ll � ��l���l��l�5���l 
Step 8d. Set S),L2� � S),L � �LlxL 
Step 8e. Compute qWk7,[7�S),L2�� 
Step 8f. If qWk7,[7�S),L2�� � 0, set  �L2�l � qWk7,[7�S),L2��, 

xL2�l � %�L2�l � �LlxL, with �Ll � ����l �����l
��l���l   

Step 8g. Set P � P � 1, and go to step 8c. 
Step 8h. Else if qWk7,[7�S),L2�� � 0 and >;),@2� � ? , End. 

Step 9. V)2� � mV), Y)2� � [7� , SU,)2� � SU,)�Z[′ ��>; % ?�@� % 1� � �k7 �>;),@ % ?� � S),L set * � * � 1 and go to step 2. 

The Algorithm(4.1) exhibits at least Q-linear convergence if SU,) is bounded and super-linear convergence if SU,) 
is unbounded ([11],pg.118), as it inherits the convergence properties of the augmented Lagrangian for fixed S. 

Since we aim at reducing the discretization error, adding large number of points, increases the size of the 
quadratic programming problem to be solved,and thereby causing a significant computational penalty. Hence, we 
introduce grid-refinement strategy [15] to assess the accuracy of the proposed method. 

Suppose ;l��� � �����, 
����� be the optimal solution of Algorithm(4.1), Then ;l��� can be approximated as 
follows;  

 
���� � ����� � ∑  

�(@1 �@�@���
��� � 
���� � ∑  
(@1 �@�@��� (3.1) 
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 where the functions �@��� form the basis for �� cubic �-splines. The coefficients �@ in the state variable representation 
are uniquely defined by Hermite interpolation of the discrete solution. The functions �@��� form the basis for � piece-
wise linear �-splines, and the coefficients �@ in the control variable representation are uniquely defined by interpolation 
of the discrete solution. Let  

 Y) � \=)��\, (3.2) 
 be the local error for the trapezoidal discretization at step *, where the coefficients =) depends on the partial derivatives 
of the right-hand side of equation(2.1). Consider a single interval �) � � � �) � �), the absolute error is defined as,  

 �@,) � �  
�72��7 |����|��, (3.3) 

 where  
 ���� � ������ % ��������� % 	���
���� (3.4) 

 defines the error in the differential equation as a function of �. Thus, the relative local error is defined by  
 Y) � max@

��,7¢�2�, (3.5) 

 where the scale weight  

 £@ � max)
( �¤�@,), ¤�¥@,)� (3.6) 

 defines the maximum value for the F�� state variable or its derivative over the , grid points in the phase. By equating 
(3.2) with (3.5), we obtain  

 \=)\ � max@
¦�,7¢�2� ��. (3.7) 

 Let the integer §) be the number of points to add to interval *, so that,  

 Y) � \m)\ M +�2¨7O� � max@
¦�,7¢�2� M ��2¨7O�, (3.8) 

 then the new mesh can be constructed by choosing the set of integers §) to minimize  
 Z�§)� � max) Y), (3.9) 

 and satisfy the constraints  
 ∑  

R©)1� §) � , % 1, (3.10) 
 and  

 §) � ,�, (3.11) 
 where equation(3.9)-(3.11) define a nonlinear integer programming problem. 

Hence, if we set the desired discretization error tolerance as ª, then the mesh refinement algorithm is proposed 
as follows; 

 
Algorithm (4.2): Mesh-Refinement  
Step 1: Set ª, «  �0,1� and ,� � 4. Compute the cubic spline representation (3.1) from the discrete solution ;l. 
Step 2: Compute an estimate for the discretization error Y) in each segment of the current mesh using (3.3) and the 
average error Y ¬. 
Step 3: If the error is equi-distributed, subdivide each interval of the current mesh and terminate. 
Step 4: Else construct a new mesh as follows 

(a) Compute the interval � with maximum error i.e;  
 Y) � max) Y). (3.12) 

        (b) Terminate if   
    • ,�′ points have been added ,�′ " min�,�, «,�  
    • the error is within tolerance: Y � ª and § � 0 or  
    • the predicted error is safely within tolerance: Y � «ª and 0 & § & ,� or  
    • , % 1 points have been added or  
    • ,� points have been added to a single interval.  
 (c) Add a point to interval �, i.e § � § � 1. 
 (d) Update the predicted error for interval � using (3.8) and go to step 5a. 
 

4.O  Numerical Examples 
In order to illustrate the effectiveness of the proposed primal-dual augmented Lagrangian method, two examples 

for LQ control of time-varying system are used for simulation and comparisons. All simulation in the following examples 
were performed in the MATLAB environment, Version 7.6.0324 Release(2008a) running on a Microsoft Windows ®F,�¯�° Home Premium operating system with an Intel(R)Pentium(R) Dual processor running at 1.87GHz.  
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Example 4.1  Consider a one-dimensional linear time-varying system referring to [5]  

 ±F�F�F:j        � � �� �  
� �9�¤���� � ³����� �� (4.1) 

 subject to  
 ¤���� � 6√�³���,        ¤�0� � 1.0,        �  �0, �!�. (4.2) 

 The Riccati equation and the state feedback equation of the system are;  

 ���� � �� µ�Ngi�¶Mh�fihfO
�2gi�¶Mh�fihfO· ,    ¤��� � �Ngi�¶Mh�fihfO

�2gi�¶Mh�fO jN¸�f�5�. (4.3) 

 The solution ���� contains the fast decaying component �jN�¹���fN�f�� and slow decaying component (constant value 1), 
so that it is stiff and can be used to test stability and precision of different numerical algorithms. 

The numerical solution ¤��� is compared in the interval 0.8 & � & 1, in which ¤��� varies rapidly. The function Z��� chosen was 
�f
� . The Table below gives the comparison for the state feedback equation.   

Table  1: Comparison of solution of state ¤���(∆� � 0.05) 

 » 8 8. ¼8 8. ¼½ 8. ¾8 8. ¾½ ¿. 8 

Analytical solution 1.0 0.0031559 0.0015098 0.0007046 0.0003481 0.00024681 

Proposed 
Algorithm 

1.0 0.0031558 0.0015097 0.0007096 0.0003481 0.00024681 

Sympl. Consv. 
Approx. 

1.0 0.0031557 0.0015097 0.0007046 0.0003480 0.00024680 

4th Runge-Kutta 1.0 0.0031788 0.0015248 0.0007090 0.0003314 0.00017988 

   

Remark 4.1 Table 1 demonstrates the effect of the proposed algorithm on the low-order trapezoidal 
approximation of the state equation. The precision is six valid numbers compared to the 4th order Runge-Kutta method 
which has 2 valid numbers and compared favorably with the symplectic conservative method, which requires the solution 
of �, � 1� partial differential equations to obtain the discrete interval energy matrices, with embedded 4th Runge-Kutta 
and discrete forward-backward algorithm to obtain the state and adjoint solution respectively. Unlike the symplectic 
conservative method, the proposed primal-dual algorithm takes computation of the objective function into consideration 
and sensitivity analysis can be implemented on the constrain equation(discretized state equation) to design efficient 
control system.  

The Figures 1 and 2 show the variation of the primal variable(¤���), dual variable(À���) and the control 
variable(³���) with time.  

 

  

Figure  1: (a) Variation of primal trajectory and  (b) variation of dual trajectory, with time for example 4.1 
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Figure  2: Variation of control trajectory for example(4.1) 
      

 
Table  2: Computational results with the proposed algorithm as a particular algorithm 

  

   
   

ÁÂ � 8. ¿Â, ÃÂ � ¿ �¿8N½ 
 ÁÂ � ¿ � ¿8N½, ÃÂ � 8. ¿Â 

 ÁÂ � 8. ¿Â, ÃÂ �8. ¿Â 
 

Hestenes-Powell 
Type 

 Primal-dual quad.  Proposed method  

K Constrain 
satisfaction 

Ä�Å� Constrain 
satisfaction 

Ä�Å� Constrain 
satisfaction 

Ä�Å� 

1 2.1968 � 10N� 1.9985 1.0828 � 10NÆ 0.1040 2.3209 � 10NÆ 0.1036 

2 3.4009 � 10N� 1.9280 6.8143 � 10NÇ 0.1034 3.84994 � 10NÈ 0.1036 
3 4.0201 � 10N9 1.7669 4.7005 � 10N¹ 0.4765 4.0712 � 10NÇ 0.2084 
4 4.3317 � 10NÆ 1.0512 4.4285 � 10N¸ 0.3916 4.3575 � 10N¹ 0.2606 
5 4.4877 � 10NÈ 0.8071 4.4478 � 10N� 0.3146 4.5001 � 10N¸ 0.2858 
6 4.5657 � 10NÇ 0.6077 4.5530 � 10N�� 0.3105 4.5724 � 10N� 0.2983 
7 4.6048 � 10N¹ 0.5290 4.6056 � 10N�� 0.3102 4.3361 � 10N�� 0.3045 
8 4.6243 � 10N¸ 0.3073 4.6289 � 10N�� 0.3123 4.4461 � 10N�� 0.3076 
9 4.6341 � 10N� 0.3090 4.6000 � 10N�9 0.3086 4.7000 � 10N�9 0.3086 
10 4.6378 � 10N�� 0.3098  

 
 
 

11 4.7393 � 10N�� 0.3103 
12 4.0878 � 10N�� 0.3119 
13 4.4000 � 10N�9 0.3203 
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Remark 4.2 The Table 2 below shows the computational result of the proposed method as a combination of 
three optimization techniques. The proposed primal-dual augmented Lagrangian method gives better convergence and 
objective function value compared to the Hestenes-Powell augmented Lagrangian like method and the primal-dual 
quadratic penalty method. It is easily seen that the number of minimization required for all the methods decrease with 
increase in the penalty parameterV). However, the effects of ill-conditioning are felt more under these circumstances 
when the unconstrained minimization is carried out with very small V) " 10N�Æ.  

Example 4.2  Consider a 2-dimensional LTV system which is a model of aerospace trajectory control[5]. The 
system data is given as follows:  

 ���� � n2� 10 � � 1o , 	��� � Ê1���2����2� Ë , ���� � 5,    Ì��� � 1.0;     �  �0,4.0�. 
And the initial conditions are ��0� � �1,1��. 

It is difficult to obtain analytical solution.Figures 3 and 4 show the variation of state variables and control 
variable for Example 4.2 as obtained by the primal-dual augmented Lagrangian method at computing interval (∆� � 0.2). 
The conclusion coincides with that of Example 4.1, which illustrates the effectiveness of the proposed method.  

 

  

Figure  3: (a)Variation of optimal state trajectory1( )x t ,(b) variation of optimal state trajectory2( )x t , (c) 

variation of dual variable1( )y t  and (d) variation of dual variable2( )y t , with time for example 4.2 
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Figure  4: variation of optimal control trajectory with time for example 4.2 
   

5.O   Conclusions 
 This paper presents the methodology of primal-dual augmented Lagrangian method. It gives a uniform way to 

solve the computational problems of Linear-Quadratic control for time varying systems, which is based on sequential 
minimization with respect to both primal and dual variables. The result obtained by the new algorithm for optimizing 
time-varying systems compares favorably with the symplectic conservative perturbation method. It has the advantage of 
reduced computational efforts and sensitivity analysis can be carried on the system design to obtain preferable objective 
function value. Thus, we have shown that conjugate gradient method for solving constrained quadratic programming 
problem is well suited for solving a certain class of discretized optimal control problems with time-varying system. 
Hence, the algorithm is attractive computationally and can be easily extended to nonlinear optimal control and deserves a 
further study.  
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