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Abstract

In this paper we are concerned with time-varying optimal control problems
whose cost is quadratic and whose state is a differential equation and with general
boundary conditions. The basic new idea of this paper is to propose a primal-dual
augmented Lagrangian method, embedded with a sequential quadratic
programming(SQP) for the solution of such problems.The benefit of this approach is
that the quality of the dual variables is monitored explicitly during the solution of the
subproblem. Moreover, the formulation of a penalized matrix in the primal-dual
variables with mesh-refinement strategy guarantees the reliability of the algorithm.
Numerical experiments verify the efficiency of the proposed method.

Keywords: Optimal control,primal-dual methods, augmented hagian methods, conjugate gradient
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1.0 Introduction

Linear quadratic(LQ) control problems are very impot in optimal control. They have many applicaspe.g
network theory, stability theory, filtering and iesation. There is an extensive body of literaturetbe study of the
stability and the existence of its controller fathp linear time-invariant(LTI) and linear time-vanit(LTV) systems[1-3].
The contrast is particularly sharp while there few& papers on numerical solutions of the contrpspecially for time
varying systems. The point is how to integratertbelinear matrix differential Riccati equation withriable coefficient
accurately and efficiently. Since Chen and Shiédttio solve the optimal controller by introducingadh function[4] to
discretize the continuous LTV system, many reseascaxtended the methodology to block pulse fundiod segmental
linear functions[5].

Birgit[6] considered time-varying linear systems Hilbert spaces and studied the optimal controbf@mm with
indefinite performance criteria over a finite hatizby applying an operator theoretic approachHerunique solvability
of the linear quadratic optimization and for théseence of solutions to the integral Riccati equmatiThus, solving the
time-dependent, matrix Riccati differential equaticomputationally remains eminent. Based on thesemative
property of the optimal control system of statecgpd an and Zhong[5] developed a symplectic comsiees perturbation
algorithm, which circumvents solving the continudiree-dependent matrix Riccati differential equatidor solving
linear quadratic control with time-varying systenSsnce the algorithm is based on perturbation ef tA'V systems,
there is need to develop algorithm that will sothe time-dependent matrix Riccati equation directhariational
iteration method(VIM) was applied to the solutiohtbe general Riccati differential equation by Batiet al[7]. The
approximate analytical method only considered tiigal value problem(IVP) of the Riccati differeatiequation, as to
the terminal value problem(TVP) obtained in theimpt control system of state space. Dai and Cog¢8fapplied the
nonlinear programming(NLP) solver to the nonlingaogramming problem obtained by using the Haar Vedve
technique to transform the state and control véegmto nonlinear programming parameters at catioos points. The
algorithm is based on the inexact step-size caionlawhich affects the convergence of the methpd}8 a result of the
development of control operator, which ensures tegamputation of the step size in the line sea@tameter, for LTI
systems[3], Olotu and Adekunle[9] developed a @#ized continuous algorithm via quadratic prograngnihrough
quadratic penalty function method for the solutmnoptimal control of time-invariant system and aleldifferential
equations[10]. The algorithm is robust and effitiéor LTI, but suffers from the inherent ill-condihing and slow-
convergence of the quadratic penalty function nei®a nonlinear programming algorithm[11].

A new penalty function method for constrained ojtation, which is amenable to both equality andjiradity
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constrained, has been developed by Barry and Djtdir Also, a primal-dual generalization of the dtenes-Powell
augmented Lagrangian function is discussed extelysas subproblem formulation of nonlinear constedioptimization
problem by Gill and Robinson [13]. Since the prirdabl augmented-Lagrangian exhibits fast convergdri¢ and has
been successfully applied to optimal control ofiéascale dynamical systems[14], it is of interasbiporating the new
penalty function method and the primal-dual augmeerniagrangian in the discretized continuous aljorivia quadratic
programming and see how it works. Furthermore, imastal systems are nonlinear and time dependantenical

solutions of linear quadratic(LQ) control for timarying systems are very important, which deseuvehér study.

In this paper, the discretized continuous algorithien quadratic programming technique[9] is extentieadptimal
control of time-varying systems. In the proposegbdthm, the optimal control problem is discretizaxd through the
construction of penalized matrix in both the priraatl dual variables , the optimal control problesadmes large sparse
guadratic programming problem. The effectivenegs rabustness of the control method is demonstriayesimulation
studies of two examples .

2.0 Method of Solution

Consider the linear time-varying(LTV) system:

x(t) = A(H)x(t) + B(t)u(t), x(ty) = X,. (2.1)
The quadratic performance index is given as
J@u) =2 [ X"P(t)x + uTQ(t)uldt, (2.2)

whereA(t), B(t), P(t), andQ(t) aren X n, n X m, n X n, andm X m continuous or piecewise continuous matrix time
functions respectively. Fort € [t,, tf], P(t) = 0, Q(t) > 0, symmetric and the end tintg is fixed. The stat&(t) and
controlu(t) aren —vector andn —vector respectively.
The LQ control problems are to find the controlubp(t) to minimize the performance index (2.2) subjedted
the dynamic equation(2.1). First we partition thieival [t,, t¢] into s sub-intervals with knotg < t; <t, - < t; and
ty = to + kAt,, whereAt, is the mesh size dft" sub-interval . If these sub-intervals are smatiLggh, we can assume
that at any collocation point, the valugg) andu(t) can be approximated by zero order spkpendu, respectively.
Applying trapezoidal discretization fergrid points to the optimal control problem(2.1Hgg.2), we have
biect min/(u) = Xi—o Kiea 1 M(Es1)Xpr1 + XeM(EOXy + Wiy N(bry 1) Up 1 + UpN(GI ) (2.3)
subject to

At At At
(Inxn = 5  Altks1))Xkr1 = (nxn + 5 A Xk — = (B(trs1)Uprs + B(tw) = 0 (2.4)
whereM(t,) = P(t;) %, N(t) = Q(ty) A‘}ﬂ, andl,,, isn X n identity matrix .

By parameter optimization[9, 15], the discretizembhppem becomes a large sparse quadratic programming
problem. We give a matrix representation

minj/(z) =z"Dz + ¢ (2.5)
subject to
Ez = k (2.6)
and
z" = x1,x7, -, x5, ul,ul,ul ---,ul) 2.7

whereD is a block diagonal matrix of ordér + m)s + m, with entries given by:
(2M(t), i=12,,s-1
M(ti)l i = S,
N(ti), i=s+ 1,
| 2N(t), i=s+2,-,2s,
N(t), i=2s+1.
whereit" element corresponds t& block, andc = x%(0)M(t,)x,(0). The matrixE is block matrix of ordens x (n +
m)s + m with the representation

[D]; =

E=(G : H), 2.8
where G is anns X ns block bidiagonal matrix witr(1 principa)ll block diagal elementyG;;] = I,xn —%A(ti)( an()d
lower block principal diagonal elemeri§;;] = — (Inxn + %A(ti_l)), Vi, j block such that = j + 1.The matrixH is
anns X (s + 1)m block bidiagonal matrix with principal block diagal element§H];; = —%B(ti_l) and upper block
principal diagonal elemen{dl;;] = —%B(tj), Vi,j block such thaf =i + 1. The column vectok is of orderns x 1
with entries given byfk],.,1 = (Inxn + AZﬂA(tO))x0 andlk;;]=0,i=n+1,n+2,-,ns.
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Giveny € R™,y, € R™, andp > 0, then by the primal-dual augmented Lagrangian awktthe unconstrained
minimization problem of the discretized optimal tehproblem(2.5) and (2.6) is

1 1
minP (z,y;yy, p, €) = z'Dz + c+ ¢ [(Ez - K);]"yz + EIIEZ —kll* + 2 IEz —k+ p(y = yDII%,

(2.9)
where ¢, is a real valued function of a single variablepeteding on a positive parameteisatisfying the following
properties[12]
(P1):  $(0) =0,
(P2):  ¢'(0) =0,

(P3): qu)/(t) = +oo,
(P4): tlir_n ¢'(t) = —o,
(P5): ¢"(t) >0 vt e R\{0},
(P6): ¢"(0)=1 VvteR.
. t? et+et-2 1,2 . t
Examples of such functions af€t) = PR andz (? + et —t). Fore > 0 defined,(t) = €¢(;)-
On expansion, we have
rrzlriyan (z,y) = 2"A,Z + py Lysxnsy + B,z + By + ¢ (2.10)
Equation (2.10) is the quadratic form represeniatn bothz andy for the unconstrained minimization problem(2.9),
where P,(z,y) is primal-dual augmented Lagrangianjs penalty parameter, the penalized mafjx= [D +%ETE],

B, =y"E - %kTE —-yiE, and B, = —py; —k" and ¢ =c+ ¢ly, + %ka + (K" + 2py])y,. Let the ns-vector
n(z) =y; — % (Ez — k), then the gradient and Hessian fqz, y) may be written as

_ (2Dz +y; ¢ [(Ez — K);]V(Ez = K); + ] (¥ — y2)
VP(z,y) = (p(y - ngz)) A ) (2.11)
VZP(Z, y) — (]ZD + Y}lwq);V(Ez - k)l. + Y,{d),sVZ(EZ - k)l + H(y - YA) :)7; ) )‘ (212)

where](z) andH(z) is the Jacobian and Hessian matrices(a) = Ez — k with appropriate dimensions. Observe that
the first-order multipliers(z) = y; —%(Ez — k) minimize P(z,y) with respect tq for fixed values of.

Theorem 2.1 Assume that (z*, y*) satisfies the following conditions associated with problem(2.10):
(i) c(z") =0,
(i) bz* =0,
(iii) there exists a positive scatarsuch thap”H(z*, y*)p = wl|pl|? for all p satisfying/(z*)p = 0.
Then(z*,y") is a stationary point of the primal-dual function

1 1
P(zy;y",p,€) =2'Dz+ ¢ + ¢ [(Ez — K);]"y" + 2 IEz — KkI|* + EIIEZ —k+py—-y)l*

Proof. We must show thalP is zero andv?P is positive definite at the primal-dual poift,y) = (z*,y*).
Assumption(i) and the definitionz(z) =y~ —%(Ez — k) implies thatr(z*) = y*. Substituting forr,z andy in the

gradient(2.11) and using the assumptiBisand(ii), givesVP(z*,y*; y", p)=0 directly.
Similarly, the Hessian(2.12) becomes
V2p(z',y") = (D 0 ) (2.13)
0 plnsxns
It is sufficient to show thab is positive definite. By definition it is easilgen thaD is positive definite and hend& P

is positive definite.

Theorem(2.1) indicates that if an estimateybis known for problem(2.9), then an approximate imination
of P with respect to botl andy is likely to provide an even better estimate.
Lemma 2.1 ([9]) Let D(t,) € R(mmistmx((ntm)s+m)  pe 3 gymmetric positive definite  matrix, let
E(t;) € R ((mstm) 5 > 0, and let KerD N KerE = 0. Then the penalized matrix 4, (t;) is positive definite.
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Lemma 2.2 ([9]) Let D(t;,) € R((mFmstmx((n+m)s+m) he 5 symmetric positive definite matrix, let
E(t,) € R>((mtm)s+m) )~ 0 gych that
z" (ti)Dz(ty) = pllz(ti)ll, z(t,) € KerD
ThenA, is positive definite for sufficiently large.

The lemmas ensure the sufficient condition#tgt,) € R(+*™)s+m) tg a be local minimum point. Hence, the
sequential minimization problem(2.10) for a fixest ¥alues ofy, and a sequence of valugs— 0 behaves like the
classical Hestenes-Powell augmented Lagrangian adethlso for p, — 0, the discretized problem(2.10) yields the
primal-dual quadratic penalty function method . $hwhenp, —» 0 ande, — 0, we have the primal-dual augmented
Lagrangian method. Then our formulation is a coratiam of three robust and efficient techniques.

Our aim is to solve the unconstrained minimizagéguation(2.10) by conjugate gradient algorithmhia inner
loop and enforce the feasibility condition in theter loop in both the primal and the dual variabdesl reduce the
discretization error.

3.0 Algorithm of The Scheme

In this section, we are proposing an algorithnttenbasis of the above discussions. This algorithbased on
the sequential minimization in both the primal ahd dual variables using the conjugate gradientralgn[3, 9], as
stated below:

Algorithm 4.1: A Primal-Dual Algorithm for Constrained Optimab@trol Problem
Step 1. Sek = 0 and choose, > 0, p, € (0,1), andc > 1. Initialize y; ), Yoo € R™ andzy, € R"+™s*™ With y
fixed.
Step 2. Set = 0 and sep, = —go = —VF,, ¢, (Zo,0)-
Py pi
p;rApPi
Step 4. Sety ;1 =z + aip;
Step 5. Comput&F,, ., (Zk,i+1)
Step 6. IfVF,, ., (zxi+1) = 0 andEz, ;,, = k, go to step 8b ;else go to step 7.
Step 7a. IVP,, ¢, (Z,i+1) * 0, set

gi+1 = VPpk,Sk(zk,i+1)’
: g;r+1gi+1
Piv1 = —Ji+1 +Vipi, Withy; = “oTe
Step 7b. Set =i + 1, and go to step 3.

Step 8a. Else €z, # K,
Step 8b. Withe, ; fixed, setj = 0 and sep; = —go = —VE,, ¢, Vo,0)-

T x

Step 8c. Compute; = pf;lp;*
j 1P

Step 8d. S@k,]’+1 = Yk,]' + a;pj
Step 8e. Comput@r,, ., (Vk,j+1)
Step 8f. IfVE,, ., (Vk,j+1) # 0, set

g;+1 = VPpk,Sk (YR,j+1)!

Step 3. Compute; =

« T x
* _ * * . « _ 9j+1 Gj+1
Pj+1 = —gj+1 T Vjpj, Withy] ===
9j 95

Step 8g. Set=j + 1, and go to step 8c.
Step 8h. Else iVF,, ., (¥ j+1) = 0 andEz; ., = k, End.

Step 9pi+1 = Pio &1 = X Vaer = Var(@LI(EZ ~ K)i] = 1) + - (Bzies — K) + ¥ Setk = k + 1 and go to step 2.

The Algorithm(4.1) exhibits at least Q-linear corgence ify, ; is bounded and super-linear convergengg jif
is unbounded ([11],pg.118), as it inherits the @ygence properties of the augmented Lagrangiafixtxt y.

Since we aim at reducing the discretization ereaftling large number of points, increases the sfzthe
guadratic programming problem to be solved,andethercausing a significant computational penaltyndtée we
introduce grid-refinement strategy [15] to asséssaccuracy of the proposed method.

Supposez*(t) = (x(t),u(t))” be the optimal solution of Algorithm(4.1), Theh(t) can be approximated as
follows;

u(t) ~ U(t) = Xi, BiGi(0) '
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where the function®;(t) form the basis fot? cubic B-splines. The coefficientg; in the state variable representation
are uniquely defined by Hermite interpolation oé tiiscrete solution. The functios(t) form the basis fo£® piece-
wise linearB-splines, and the coefficienfs in the control variable representation are uniguilfined by interpolation
of the discrete solution. Let

g =~ llehll, (3.2)
be the local error for the trapezoidal discret@matt stepk, where the coefficients, depends on the partial derivatives
of the right-hand side of equation(2.1). Considsingle intervak, <t < t, + h;, the absolute error is defined as,

= [ [p@)ldv, (3.3)
where
P(t) = x(t) — A(DX(t) — B(O)u(t) (3.4)
defines the error in the differential equatioradsanction oft. Thus, the relative local error is defined by
& ® m,ax%, (3.5)
where the scale weight
S ~ ot
w; = mgx[xi,k'xi,k] (3.6)

defines the maximum value for tligh state variable or its derivative over therid points in the phase. By equating
(3.2) with (3.5), we obtain

llcell = max T p2, (3.7)
i witl
Let the integef,, be the number of points to add to interkako that,
hy3 Nik 1)\3
&~ llell (77) = max 2 () (3.8)
then the new mesh can be constructed by chodsinget of integerk, to minimize
¢L) = mkaxek, (3.9)
and satisfy the constraints
Z"’cl.v:l Ik <s-— 1' (310)
and
Ik < S1, (311)

where equation(3.9)-(3.11) define a nonlineargatgprogramming problem.
Hence, if we set the desired discretization eroterance ag, then the mesh refinement algorithm is proposed
as follows;

Algorithm (4.2): Mesh-Refinement
Step 1: Sef, k € (0,1) ands; = 4. Compute the cubic spline representation (3.Ipftloe discrete solution’.
Step 2: Compute an estimate for the discretizagionr €, in each segment of the current mesh using (3.8)the
average errog.
Step 3: If the error is equi-distributed, subdivedeh interval of the current mesh and terminate.
Step 4: Else construct a new mesh as follows
(a) Compute the interval with maximum error i.e;
& = Maxey. (3.12)
(b) Terminate if
*s,’ points have been added = min[s;,, ks]
« the error is within tolerance, < § andl, = 0 or
« the predicted error is safely within tolerang, < xé and0 <1, < s; or
s — 1 points have been added or
«s; points have been added to a single interval.
(c) Add a point to intervat, i.el, =1, + 1.
(d) Update the predicted error for intervalising (3.8) and go to step 5a.

4.0 Numerical Examples
In order to illustrate the effectiveness of thegmeed primal-dual augmented Lagrangian method etvamples
for LQ control of time-varying system are used $onulation and comparisons. All simulation in tleldwing examples
were performed in the MATLAB environment, Versiorn6.0324 Release(2008a) running on a Microsoft Wivilo
Vista™ Home Premium operating system with an Intel(R)RemtR) Dual processor running at 1.87GHz.
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Example 4.1 Consider a one-dimensional linear time-varying systemreferring to [ 5]

Minimize ] == [ (9tx?(t) +u?(t)) dt (4.1)
subject to
x(t) = 6vtu(t), x(0) =10, t€][0,t] (4.2)
The Riccati equation and the state feedback emjuafithe system are;

c© = 1(—18;) w(o ==

d e %’ [5]. (4.3)

1+ 1+e_18(t12’)

The solutionC (t) contains the fast decaying compon@sﬂla(tﬁ_tz)) and slow decaying component (constant value 1),
so that it is stiff and can be used to test stigtdlnd precision of different numerical algorithms.
The numerical solutiow(t) is compared in the interval8 < t < 1, in whichx(t) varies rapidly. The function
2
d(t) chosen Waéz—. The Table below gives the comparison for theedie¢dback equation.
Table 1 Comparison of solution of stat&t)(At = 0.05)

t 0 0.80 0.85 0.90 0.95 1.0
Analytical solution 1.0 0.0031559 0.0015098 0.000704¢ 0.0003481 0.@3124
Proposed 1.0 0.0031558 0.0015097 0.000709¢ 0.0003481 0.@3124
Algorithm
Sympl. Consv. 1.0 0.0031557 0.0015097 0.0007044 0.0003480 0.@3w4
Approx.
4th Runge-Kutta 1.0 0.0031788 0.0015248 0.000709( 0.0003314 0.G33L7

Remark 4.1 Table 1 demonstrates the effect of the proposed algorithm on the low-order trapezoidal
approximation of the state equation. The precision is six valid humbers compared to the 4th order Runge-Kutta method
which has 2 valid numbers and compared favorably with the symplectic conservative method, which requires the solution
of (s + 1) partial differential equations to obtain the discrete interval energy matrices, with embedded 4th Runge-Kutta
and discrete forward-backward algorithm to obtain the state and adjoint solution respectively. Unlike the symplectic
conservative method, the proposed primal-dual algorithm takes computation of the objective function into consideration
and sensitivity analysis can be implemented on the constrain equation(discretized state equation) to design efficient
control system.

The Figures 1 and 2 show the variation of the prinaxiablef(t)), dual variableg(t)) and the control
variable{:(t)) with time.

(a) (B

1
] L] o . L] ) L] e . ) L]

Figure 1:(a) Variation of primal trajectory arfl) variation of dual trajectory, with time for erple4.1
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Figure 2: Variation of control trajectory for expla(4.1)

Table 2: Computational results with the propodgdrithm as a particular algorithm

£, =0.1% p, =1x g, =1x1075, g, =0.1% p, =
107> pr =0.1F 0.1*
Hestenes-Powell Primal-dual quad. Proposed method

Type

K Constrain J(w) Constrain J(w) Constrain J(w)
satisfaction satisfaction satisfaction

1 2.1968 x 1072 1.9985 1.0828 x 107> 0.1040 2.3209 x 1075 0.1036
2 3.4009 x 1073 1.9280 6.8143 x 1077 0.1034 3.84994 x 10~ 0.1036
3 4.0201 x 10~* 1.7669 4.7005 x 1078 0.4765 4.0712 x 1077 0.2084
4 4.3317 X 1075 1.0512 4.4285 x 107° 0.3916 43575 x 1078 0.2606
5 4.4877 X 10~ 0.8071 4.4478 x 10710 0.3146 4.5001 x 10~° 0.2858
6 4.5657 x 1077 0.6077 4.5530 x 1011 0.3105 4.5724 x 10710 0.2983
7 4.6048 x 1078 0.5290 4.6056 x 10712 0.3102 43361 x 1071 0.3045
8 4.6243 x 107° 0.3073 4.6289 x 10713 0.3123 44461 x 10712 0.3076
9 4.6341 x 10710 0.3090 4.6000 x 10~ 0.3086 4.7000 x 10”4 0.3086
10 4.6378 x 10711 0.3098
11 4.7393 x 10712 0.3103
12 4.0878 x 10713 0.3119
13 4.4000 x 10~ 1* 0.3203
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Remark 4.2 The Table 2 below shows the computational result of the proposed method as a combination of
three optimization techniques. The proposed primal-dual augmented Lagrangian method gives better convergence and
objective function value compared to the Hestenes-Powell augmented Lagrangian like method and the primal-dual
quadratic penalty method. It is easily seen that the number of minimization required for all the methods decrease with
increase in the penalty parameterp,. However, the effects of ill-conditioning are felt more under these circumstances
when the unconstrained minimization is carried out with very small p, > 10715,

Example 4.2 Consider a 2-dimensional LTV systemwhich isa model of aerospace trajectory control[5]. The
system data is given as follows:

Ao =31 |Bo= [<1zr+z>] P(O) =1, Q(t)=10; ¢e€[040]
0 t+1 ‘ 2t+3 ‘ ’ ‘ ‘
And the initial conditions are(0) = (1,1)7.
It is difficult to obtain analytical solution.Figes 3 and 4 show the variation of state variables @mntrol
variable for Example 4.2 as obtained by the pritchad! augmented Lagrangian method at computingviatéat = 0.2).
The conclusion coincides with that of Example 4vtich illustrates the effectiveness of the propasethod.

15 15
1
1
= &=
N 05 N
0.5
0
. @
08, 2 4 % 2 s @
t t
10°
X 6000
0.5
4000
€ 3 €,
- -
2000
0.5
-1 s 0 .
0 2 4 © o 2 4 @
t t

Figure 3: (a)Variation of optimal state trajectd{t) ,(b) variation of optimal state trajectoxy(t) , (c)

variation of dual variablg, (t) and (d) variation of dual variaby (t) , with time for example 4.2
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2 \ / ]
,r'f
\ /
25 \ / 7
\ /
\ /
3t \. / .
N~
_3.5 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 4: variation of optimal control trajectosth time for example 4.2

5.0 Conclusions

This paper presents the methodology of primal-dwagmented Lagrangian method. It gives a uniformg tea
solve the computational problems of Linear-Quadratintrol for time varying systems, which is basedsequential
minimization with respect to both primal and duakiables. The result obtained by the new algorifomoptimizing
time-varying systems compares favorably with thegectic conservative perturbation method. It Hesddvantage of
reduced computational efforts and sensitivity asiglgan be carried on the system design to obtaiflerable objective
function value. Thus, we have shown that conjugmealient method for solving constrained quadrati@gpamming
problem is well suited for solving a certain cladfsdiscretized optimal control problems with timarying system.
Hence, the algorithm is attractive computationaliyl can be easily extended to nonlinear optimatiroband deserves a
further study.
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