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Abstract 
 
This work discusses the accuracy and effectiveness of search method for 

optimizing a multivariable unimodal function using various updates. 
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1.0    Introduction 
 

Optimization is the collection processes of determining a set of conditions required to achieve the best result from a 
given situation [2], for any individual or organization. All of us make many decisions in the course of our day-to-day 
events in order to accomplish various tasks. Although some choices will generally be better than others, Consciously or 
unconsciously, we must decide upon the best or optimal way to realize our objectives. 

In design, Construction, and maintenance of any engineering system, engineers have to take many technological and 
managerial decisions at several stages. The ultimate goal of all such decisions is to either minimize the effort required or 
maximize the desired benefit, since the effort required or benefit desired in any practical situation can be expressed as the 
process of finding the conditions that give the maximum or minimum value of a function. 

This study deals with the accuracy and effectiveness of search method for optimizing a unimodal function. A 
function is said to be unimodal if it has only one maximum or minimum in the region to be searched.  

In getting an optimal value of a unimodal function, we first conduct a search. Search techniques could either be 
classified as either sequential or preplanned (simultaneous) search. A sequential search involves step-by-step procedure 
and the outcome of an experiment is determined before another experiment is made. In a preplanned search technique, the 
location of the experiment is specified and the outcome of the measurement is obtained at the same time.  
 

1.1    Methodology 

A search method is employed for functional evaluations.It is sometimes difficult to determine the exact optimal point 
of a unimodal function due to various assumptions and experiments carried out. 

Therefore, there is a need to compare search techniques used for evaluation of the optimal point of a unimodal 
function. This will determine the most effective and accurate one with fewer experiments. 

There are essentially six (6) types of procedures to solve constrained nonlinear optimization problems. The three 
considered most successful are successive linear programming, successive quadratic programming and the generalized 
reduced-gradient method. The other three have not proved as useful, especially on problems with a large number of 
variables (more than twenty).These are penalty and barrier function methods, augmented Lagrangian functions and the 
methods of feasible directions (or projections) which are sometimes called methods of restricted movement. The reader 
interested in constrained multivariable search method can see [3] 
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2.0 Unconstrained Multivariable Search Methods 

2.1 Quasi-Newton’s Method[5] 

This method begins the search along a gradient line and use gradient information to build a quadratic fit to the economic 
model (profit function). Consequently, to understand these methods it is helpful to discuss the gradient search algorithm 
and Newton's method as background for the extension to the quasi-Newton algorithms. All of the algorithms involve a 
line search given by the following equation.  ����  �  ��– �	�
����.                                                          �2.1.2 
 The quasi-Newton algorithm that employs the BFGS(Broyden, Fletcher, Golfarb, Shanno) formula for updating the 
Hessian matrix is considered to be the most effective of the unconstrained multivariable search techniques, according to 
Fletcher[5]. This method is an extension of the DFP (Davidon, Fletcher, Powell) method. 
 

2.2 Davidon Fletcher Powell Methods (DFP) [4] 

The DFP algorithm has the following form of equation for minimizing the function y(x).  
   ����  �  ��– �	�
����. 
Where���� is the parameter of the line through��, ���	� is given by the following equation(2.2.1).  	�  �  	���  �  ��  �  ��                         �2.2.1 
The matrices ������� are given by the following equations.  

�� � ��� � ������� � �����
��� � ������
���� � 
������                                     �2.2.2 

 

�� � ������
���� � 
�������
���� � 
�������������
���� � 
������������
���� � 
������ �2.2.3 

     The algorithm begins with a search along the gradient line from the starting point x0 as given by the following equation 
obtained from equation, with  " �  0.  
 ��  �  �$– ��	$
���$.                                               �2.2.4 

 

2.3 Powell’s Symmetric Methods [6] 

In Powell's algorithm [6] the procedure begins at a starting point x0, and each application of the algorithm consists of 
(n +2) successive exact line searches. The first (n +1)are along the n coordinate axes. The (n+2)nd line search goes from 
the point obtained from the first line search through the best point (obtained at the end of the (n +1) line searches). If the 
function is quadratic, this will locate the optimum. If it is not, then the search is continued with one of the first n 
directions replaced by the �� �  1&' direction, and the procedure is repeated until a stopping criterion is met. In Powell's 
method, the conjugate directions are the orthogonal coordinate axes initially, and in steep ascent pattern the conjugate 
directions are the gradient lines. 
 
 Powell's Method For A General Function: 

0.  Calculate �� so that ���� � �� () is a minimum, and define xo = xI +*+(,  
1.  For j = 1,2,...,n:  
    Calculate �- so that ���- ��  �  �-  .- is a minimum.  
     Define �-  �  �- ��  �  �-  (-  
     Replace (-  /012 (-��  

2.  Replace () /012 �) –  �3 
3.  Choose � so that � 4� ��) – �$5 is a minimum, and replace xo with xo+ �(xn - xo).  
4.  Repeat steps 1-3 until a stopping criterion is met.  
For a quadratic function the method will arrive at the minimum on completing Step 3. For a general function Steps 1-3 are 
repeated until a stopping criterion is satisfied. Step 0 is required to start the method by having �3, the point beginning the 
iteration steps 1-3, be a minimum point on the contour tangent line (). The following example illustrates the above 
procedure for a quadratic function with two independent variables.  
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3.0 Examples of Unconstrained Multivariable Search Methods 

We are considering two examples, one equation for two unconstrained search methods in other to determine the 
most accurate and effective among the updates. 
 
Example 1: 
Search for the minimum of the following function using the DFP algorithm starting at 

` �$�  �  �0,0,0.  
 60�070.8   ��� � 7:�; � 2:;; � 2:<; � 2:�:; � 2:;:< � 2:�:< � 8:< 
 

 

 

 

 

 

 

 

 

(3.1) 
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:$� � �0,0,2  , 
��:�� � ��4, 4, 0,   
y�X$T � �0,0, �8 
The algorithm continues using equation (3.1) for k=1 

     (3.2) 
 

   

 

(3.3)  

 

 (3.4) 

  

for k=1 equations (3.3) and (3.4) becomes: 
 

 
  :$ � �0,0,0 ,          :�� � �0,0,2 
 
                       
��:�� � ��4,4,0 ,     
y(:$� � �0,0, �8 
 
Consequently, we then obtain the following: 
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From (3.2) 
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 The Value of �;is computed by substituting for �; in (3.2)

 

:;� � A 423 , � 423 , 3823B ,   
��:;� � �� 2823 , 6823 , � 4823 

 
The computation of �< uses equation (3.1) as follows: 
 Where 

                         
��:;� � D� ;E
;< , FE

;< , � GE
;<H ,   �; � �� �  �; � �;,  
��:�� � ��4, 4, 0    

                                    :� � �0,0,2  ,     :; � � G
;< , � G

;< , <E
;< 
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Example 2: I818J70�8 128 70�07K7 LM 128 MLNNL/0�O MK�P10L� K.0�O 128 �QRS �NOLJ0127 .1�J10�O �1 :$ � �0,0,0 60�070.8   ��� � 7:�; � 2:;; � 2:<; � 2:�:; � 2:;:< � 2:�:< � 8:< 
The first application of the algorithm is the same as the example above, which is a search along gradient line through�$ ��0,0,0. The results were: :�� � �0,0,2,                 
��:�� � ��4,4,0 :$� � �0,0,0,                 
��:$� � �0,0, �8 
The algorithm continues using equation (3.1) for " � 1 
 

 

            (3.5) 

      Where    

                                     �$ �  T1 0 00 1 00 0 1U   ,  V$ � :� � :$ � T002U 
 

                                               W$ �  
��:� � 
��:$ � T�448 U   ,  V$�W$ � 16 ,   W$��$W$ � 96. 
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The value of :; is computed by substituting for �; in (3.2) 

                                            :;� � DG
Y , � G

Y , �G
Y H  , 
��:;� � �4,4,0 
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The value of the function at the minimum for BFGS and DFP in Tabular form 
    

 
 

 

 

 

 

The quasi-Newton algorithm that employs the BFGS(Broyden, Fletcher, Golfarb, Shanno) formula for updating the 
Hessian matrix is considered to be the most effective of the unconstrained multivariable search techniques, according to 
[5]. This method is an extension of the DFP (Davidon, Fletcher, Powell) method. 
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The choice of equations taken into consideration is of paramount importance. This paper was convered from 
Multivariable Optimization Procedure[1] 
 
Determine the minimum of the following function using the DFP algorithm starting at�$�  �  �0,0,0.  
Minimize: 5:�;  �  2:;;  �  2:<;  �  2:�:;  �  2:;:< �  2:�:< �  6:< 
Performing the appropriate partial differentiation, the gradient vector y(x) and the Hessian matrix are:  

       ,              

The optimal value of ��is determined by an exact line search using x1 = 0, x2 = 0, x3 = 6��as follows: 

���� �  2�6��; �  6�6�� �  72��;–  36�� 

 

 

             The value of x1 is computed by substituting for 1 in the previous equation.  

                    e��  �  D0, 0, <
;H , 
��:��  �  ��3 ,3 ,0 , 
��ef�  �  �0 ,0, �6 

            The algorithm continues using equations (3.1) for  " � 1.  
                       eg  �  eg– �;	�
��e� 
                 The optimal value of�; is determined by an exact line search as follows.  
                           y(�2) = 12�2

2 - 12�2 + 9/2 

 
        The value of x2 is computed by substituting for�2 in (3.2).  
                      x2

T = (1, -1, 5/2), y(x2)
T = (3, 3, 0)  

           The computation of x3 uses equations (3.1) as follows:  
                      x3= x2–�<H2 y(x2)  

andthe optimal value of �3 is determined by an exact line search as follows:  
y(�3) = 5 + 2(1 + 12�3/5)2 + 2(5/2 + 6�3/5)2 - 2(1 + 12�3/5) -2(1 + 12�3/5)(5/2 + 6�<\5) - 2(5/2 + 6�3/5) - 6(5/2 + 6�3/5) 

Setting 
hi�jk

hjk  �  0 and solving for �3 gives �<  � Y
�; and �<�  �  �1, �2, 3 which is the value of the function at the 

minimum.  
Determine the minimum of the following function using the BFGS algorithm starting at x0 = (0,0,0).  
Minimize: 5x1

2 + 2x2
2 + 2x3

2 + 2x1x2 + 2x2x3 - 2x1x3 - 6x3 
The first application of the algorithm is the same as above, which is a search along the gradient line through x0 = (0,0,0). 
These results were:  
x1

T = (0, 0, 3/2) , y(x1)
T = (-3, 3, 0)  

x0
T = (0, 0, 0), y(x0)

T = (0, 0, -6)  

The algorithm continues using equations (3.1) for k=1.  
x2 = x1–�;H1 y(x1) 

The optimal value of�2 is determined by an exact line search using x1 = 3�2, x2 = -3�2, x3 = 3/2 + 3�2 in the function is 
minimized to give:  
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y = 27�2

2 - 18�2 + 4½  
 
 
 
 
 
The value for x2 is computed by substituting for �2 in 
x2

T = (1, -1, 5/2), y(x2)
T = (3, 3, 0)   

The computation of x3 repeats the application of the algorithm as follows:  
x3 = x2 - �3H2 y(x2)  

The optimal value of �3 is determined by an exact line search using x13 = 1, x23 = -1-6�3, x33 = 5/2 + 3�< in the function 
being minimized to give y(�3). The value of �3 = 1/6 is determined as previously by setting dy(�3)/d�3 = 0, and the 
optimal value of x3

T = (1,-2,3) is computed, which is the value of the function at the minimum. 
 
4.0 Conclusion 

The quasi-Newton algorithm that employs the BFGS(Broyden, Fletcher, Golfarb, Shanno) formula for updating the 
Hessian matrix is considered to be the most effective of the unconstrained multivariable search techniques, according to 
[5]. This method is an extension of the DFP (Davidon, Fletcher, Powell) method. 

Deterministic problems have no experimental error or random factors present. Example is the mathematical model of 
a process, where the outputs are calculated by a computer program from specified inputs. Stochastic problems have 
random error present, usually in the form of experimental errors from measurement of the process variables. An example 
is a plant where there are experimental errors associated with laboratory and instrument measurements of the process flow 
rates and composition. 

Search plans can be classified as either simultaneous or sequential. In a simultaneous search plan the locations of all 
of the experiments are specified, and the outcome of the measurements is obtained at the same time. An example is the 
location of a set of thermocouples installed along the length of a fixed-bed reactor to determine the position of the hot 
spot (maximum temperature) in the catalyst bed while the process is in operation. In a sequential search plan the outcome 
of an experiment is determined before another experiment is made. Being able to base future experiments on past 
outcomes is a significant advantage. In fact, it can be shown that the advantage of sequential search plans over 
simultaneous search plans increases exponentially with the number of experiments. 
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