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Abstract 
 
The Remote Manipulator System (R.M.S) is a typical example of a robotic 

manipulator. It is a two – link planar system which is made up of the base link (link 
0), the upper arm link (link 1) and the end – effector or forearm link (link 2). The two 
joints are revolute and are respectively located at the shoulder and the elbow. In this 
work, frames are assigned to all the links; the direct and inverse kinematics modelling 
of the manipulator arm is also being discussed. The complete homogeneous 
transformation matrices relating gripper’s (generally known as the end – effector) 
frame with the base / reference frame have being derived using Denavit – Hartenberg 
matrix. 

  
 Keywords: Manipulator Arm, Frame, Link, Joint, End – Effector, Mapping, Kinematics. 

1.0    Introduction 
 

Kinematics is the science of motion which treats motion without regard to the forces which causes it.  The study of 
manipulator kinematics refers to all the geometrical (the position and orientation) and time based property (velocity, 
Acceleration) of the motion. The manipulator architecture of a robot is composed of an arm mostly for movements of 
translation, a wrist for movement of orientation and an end – effector for interaction with the environment and / or 
external objects. Generally, the term manipulator refers to the mechanical structure a robot must have in order to move an 
object around in the working volume [1]. According to Marco [2], the term manipulator refers specifically to the arm 
design, but it can also include the wrist when attention is addressed to the overall manipulation characteristics of a robot. 
In this work, only the arm design is discussed.  

The mobility of a manipulator is due to the degrees of freedom (D.O.F) of the joints in the kinematic chain of the 
manipulator, when the links are assumed to be rigid bodies.  The assembly of sequential links and joints make up a 
kinematic chain [3]. An assemblage of links and joints was defined by Joseph Duffy [4] as a kinematic chain that may be 
opened or closed. It can be an opened or closed loop, or it can be a combination of opened and closed loops. A kinematic 
chain can be of open architecture, when referring to serial connected manipulators, or closed architecture, when referring 
to parallel manipulators as in the examples shown in Figure 1. These skeletal forms are essentially geometrical models 
which can be labelled conveniently with the joint variables and the link lengths [4]. 
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The type of manipulator arm described in this paper is basically a series of rigid bodies in a kinematic structure 

commonly referred to as open kinematic chain; this is shown in Figure 2.  Manipulator arm is subdivided into various 
parts; this includes: the links, the joints and the end – effector. This paper discusses mainly the geometrical property of 
the motion. 

 
1.1 The Links 
       The links are the linearly rigid bodies which lie in between two joints. The link that is held fixed is called the base 
link which serves as the frame of reference. Each link member is numbered from 0 to n; the base link is numbered 0 while 
the most distal link is numbered n. 
The links of the R.M.S are made from plastic pipes and each of the links can be likened to human arms connected by 
joints; a typical example of this is shown in Figure 2. 
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Fig. 2: Parts of Manipulator Arm showing the Revolute Joint – Link Structure     
            in an Open Kinematic Chain 
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Fig. 1: Planar examples of kinematic chains of manipulators: (a) Serial chain as 
open type     (b) Parallel chain as closed type 

(a) (b) 



141 

 

 
Mathematical Modelling of a Two – Link Planar...       Olusola  and  Fakolujo       J of  NAMP 
 
1.2 The Joints 

The joints are the part of the manipulator which are usually instrumented with position sensors which allow relative 
position or motion of neighbouring links to be measured. The joint types in robots are usually related to revolute and 
prismatic pairs with one degree of freedom (D.O.F). According to Philippe and Michael [5], degrees of freedom have to 
do with the number of independent position variables that have to be specified in order to locate all parts of the 
mechanism. The Revolute or rotary joint takes the form of a hinge in which adjacent links rotate with respect to each 
other about the joint axis; a good example of the revolute joint is the hinge joint in man while the prismatic or sliding 
joint is a type of joint in which the relative displacement between links is a translation. They can be modeled as shown in 
Figure 3. 

 

The manipulator arm described in this work has 2 major joints at the arm which are revolute and thus, it has two 
degrees of freedom. It also possesses the base link (link 0), upper arm link (link 1) and the fore arm link (link 2). For these 
reasons, it is therefore a two – link revolute planar manipulator. It is a planar manipulator because all the joints lie on the 
same axis; it also has two co-ordinates (x, y). 

 
1.3 The End – Effector 

In robotics, an end – effector is a device or tool connected to the end of a robot arm. The structure of an end – 
effector, and the nature of the programming and hardware that drives it depends on the intended task. If a robot is 
designed to set a table and serve a meal, then robotic hands, more commonly called grippers are the most functional end – 
effectors [1]. The same or similar gripper might be used, with greater force, as a plier or wrench for tightening nuts or 
crimping wire. In a robot designed to tighten screws, however, a driver–head end – effector is more appropriate; a gripper 
will be a hindrance in that application. The driver–head can be attached directly to the robot arm and it can also be easily 
removed and replaced with a device that operates with similar motion, such as a bit for drilling or an emery disk for 
sanding. Also, for a robot designed to pick up a piece of iron, the end – effector may be an electromagnet. 

A robot arm can accommodate only certain end – effector task modes without changes to the auxiliary hardware 
and/or programming. It is not possible to directly replace a gripper with a screw driver head, for example, and expect a 
favourable result. It is necessary to change the programming of the robot controller and use a different set of end – 
effector motors to facilitate torque rather than gripping force [6]. Once this is done, the gripper can then be replaced with 
a driver – head. The end – effector motion is caused by motions of the intermediate links between the base link and the 
last link. The relative motion of adjacent links is caused by motion of the joint connecting the two links. There is an 
actuator in each of the joints that will carry out the actual movement; also, there are sensors to move the actuators in a 
desired angle. Thus, the end – effector location can be determined by investigating the position and orientation of each 
link member in series from the base to the end – effector [7]. To describe the position and orientation of each link 
member, frames are usually used; these frames are represented using square brackets 

The end – efffector designed for the R.M.S is a two – finger gripper. In order to represent the position and orientation 
of end – effector, a co-ordinate frame say [P] is attached to the last link. The location of this frame is now described 
relative to another [0], that is, frame attached to the base link. 
 

1.4 Descriptions of Positions and Orientation 

As earlier explained, frames are usually represented using square brackets. For example, Let [A] be the co-
ordinate frame A with XA, YA and ZA denoting the unit vectors in the direction of the three principal axes. A point P in 
space may be represented with respect to [A] by the 3x1 position vectors shown in equation (1). 
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Fig.3: Schemes for joints in robots: (a) Revolute (b) Prismatic joint 
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The 3×1 position vector stated in equation (1) can be represented in pictorial form as shown in Figure 4. 

 

Let point P be a point on a manipulator end – effector or any rigid body. P reference A (AP) represents the 
position of the end – effector with respect to [A]. To find the orientation of the end – effector, a co-ordinate [B] is 
attached to the body. This is shown in Figure 5. 

 

According to Francis and Andras [3], [B] is described relative to [A] with the matrix expression shown in 
equation (2). 
 

 
Where AXB, AYB and AZB are unit vectors in co-ordinate frame B expressed in terms of frame A. RA

B  is the rotation matrix 

describing Frame B relative to Frame A (reference point). Since the components of any vector are simply the projections 
of that vector onto the unit directions of its reference frame, hence,  
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Fig. 5: Diagram showing how the orientation of the end – effector can be found 

XB 

YB 

ZB 

B  

A  

XA 

YA 

ZA 

Fig. 4: Pictorial representation of the 3×1 position vector P reference A (AP) 

A  

A
P 

PZ 

PY 

PX 

XA 

YA 

ZA 



143 

 

Mathematical Modelling of a Two – Link Planar...       Olusola  and  Fakolujo       J of  NAMP 
 

 

2.0    Theoretical Analysis 

2.1    Mapping of Frames 

The term mapping is sometimes used when changing descriptions from frame to frame. RA
B , for example, 

means mapping frame B onto reference frame A or orientation of [B] with reference to [A] as shown in Figure 6. 

 

 

 

 

 

 

 

 

P is a point in co-ordinate frame B but to be described with reference to Frame A. Expression for AP is given in equation 
(4) where APB0 is the position vector of origin of [B] with reference to [A]. BP is another position vector with reference to 
[B]. 

Therefore,   
 AP = BP + APB0…………                                           (4) 

 
2.2    Frame Mapping in the Two Degrees of Freedom Planar Manipulator Arm 
The designed manipulator arm in this work has 3 frames and two co-ordinates (x, y). This is illustrated in Figure 7. 
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Fig. 6: Diagram illustrating frame mapping using [A] and [B]. 
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The position vector of point P in [2] relative to [1] can be described in terms of the rotation matrix of [2] with reference to 

[1] { R1
2 } by equation (5). 

20
121

2
1 PPRP +=      (5) 

Likewise, the position vector of point P in [2] relative to [1] can also be described in terms of the transformation matrix of 
[2] with reference to [1] by equation (6). The transformation matrix of [2] with reference to [1] is represented in matrix 
form as shown in equation (7). 

PTP 21
2

1 =       (6) 

   (7) 

Also, PTP 10
1

0 =       (8) 

In general, PTP k
k
00 =  

Where, Tk
0

 
is the homogeneous transformation matrix relating K – frame with 0 – frame  

Substituting equation (6) into (8) gives  

PTTP 21
2

0
1

0 =       (9) 

From equation (9), 

TTTT 1
2

0
120

0
2 , ==      (10) 
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Fig. 7: Diagram of frame mapping in the two – D.O.F planar manipulator arm 
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Where T0, 2 is the transformation matrix of [2] relative to [0] 

T0, 1  is the position and orientation or transformation of [1] relative to [0]. 
T1, 2  is the transformation of [2] relative to [1]. 
Equation (10) thus shows that the transformation of end – effector frame with respect to the base frame can also be found 
by finding the transformation of one frame with respect to its preceding one and then finally multiplying them all together 
to get the transformation of end – effector with reference to base frame [8]. 

In terms of the known description of frame 1 and frame 2, the expression for T0, 2 can be expressed in terms of 
rotation matrix and position vector as 

(11) 

3.0 Experimental Work 
3.1 Assigning Link Frames 

The Manipulator arm explained in this paper and as illustrated in Figure 8 is described with respect to three frames 
namely:  

1) The base or reference frame cited at the shoulder joint. This is the frame attached to link 0 (that is, the base of the 
manipulator) [9]. 

2)  The upper arm frame cited at the elbow joint. This is the frame attached to link 1.  

3) The fore arm frame. This is the frame attached to link 2 or the end – effector link.  

To define a co-ordinate frame attached to each link, the common normal between the two joint axes must be 
determined for the link [3].  However, no such link exists for the base and the last links since each of these links has only 
one joint axis. For these two links, the co-ordinate frames are defined as follows. 

� For the last link, the origin of the co-ordinate frame can be chosen at any convenient point of the end – effector.  
The orientation of the co-ordinate frame must be determined so that X2 axis intersects the last joint axis at a right 
angle. The choice of Y2 is arbitrary [10]. 

� For the base link, the origin of the co-ordinate frame can be chosen at any arbitrary point on the joint axis; the Zo 
axis must be parallel to the joint axis while the orientation of Xo and Yo axis about the joint axis is arbitrary. 

� For the first link, the origin of the co-ordinate [1] is located at the intersection of the joint axis 1 and the common 
normal between joint axis 2 and 1.  The X1 axis is directed along the extension line of the common normal while 
the Z1 axis is along the joint axis 1. The Y1 axis is chosen such that the resultant [Y] forms a right hand co-
ordinate system. Since all the joints are on the same plane for the 2 D.O.F planar manipulator arm, the common 
normal between the two joint axes cannot be obtained; hence, the choice of X1 axis is arbitrary.  The Y1 axis is 
still chosen such that the resultant [Y] forms a right hand co-ordinate system. 
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4.0 Results and Discussion 
4.1 The Denavit – Hartenberg (D-H) Model 

In a general form, the transformation of one frame can be obtained with reference to the other frame by using the 
Denavit – Hartenberg general formula shown in equation (12). [1], [11], [12]. 

 

The variables employed in finding the transformation of one frame with reference to other frames are known as Denavit – 
Hartenberg Parameters. They are: θί, αί, aί and dί, with the following definitions: 

• ί:         Number of links 
• θί:      This is the angle between Xί-i and Xί measured about Zί -i; this is often called the  

          joint angle or joint displacement. 
• αί:      This is the angle between joint axis ί and joint axis ί+i in the right hand sense.   

          That is, the angle between Zί-1 and Zί measured along Xί .It is also called link twist. 
• aί:      This is the length of the common normal.  That is, the distance from Zί-i and Zί  

          measured along Xί. It is also called link length. 
• dί:      This is the distance from Xί-i to Xί measured along Zί-i. It is at times called link     

          offset. 
The θί, αί, aί and dί are collectively referred to as the Link or Denavit – Hartenberg parameters. 
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Fig. 8: Assigning Frames to the Two – Links Revolute Planar Manipulator Arm 

a1 = 33.5cm;    a2 = 39.0cm;    θ1 = 350;    θ2 = 150 
Where    [0] = Reference or Base frame cited at shoulder joint 
 [1] = Frame 1 cited at elbow joint 
 [2] = Frame 2 cited at end – effector 
 X0 & Y 0 are respectively the X and Y co-ordinates of      
               [0] 

X1 & Y 1 are respectively the X and Y co-ordinates of  
[1] 
X2 & Y 2 are respectively the X and Y co-ordinates of  
[2] 

It should be noted that Z0, Z1, and Z2 co-ordinates are not taken 
into consideration for [0], [1], and [2] respectively because all 
the joints are on the same plane. 
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4.2 Calculating the Denavit – Hartenberg Parameters 

The designed manipulator is a two – link revolute planar arm in which the two joint axes of the two – link  
Manipulator arms are parallel; according to Francis and Andras [3], the link offset di for parallel joint axis is zero. 

Since the two axes are parallel, no angle deviation exist between them; hence, their link twist αί = 0. Before the link 
parameters can effectively be derived, frames must be assigned to the various links as shown in Figure 8.  The link or 
rigid lamina upon which the shoulder joint is firmly mounted on forms the base link or the reference frame/link. The D-H 
parameters for each links tabulated in Table 1 were obtained when the manipulator arm was at its folding position and the 
mathematics of the transformation matrix for the two – D.O.F revolute planar manipulator arm was carried out using the 
data in Table 1. 

Table1: The D-H Parameters for the Two Links 

Link no   ί         ai       αί       di       θί 

      1   33.5 cm       0       0      350    

      2   39.0 cm       0       0      150 

 

4.3   Finding the Transformation Matrix for the two – D.O.F Revolute Planar Manipulator    
        Arms. 

Direct Kinematics is a mechanics which deals with the determination of transformation (position and orientation) of 
any point on the manipulator with respect to any other frame, given the joint displacements of the manipulator [13]. For a 
manipulator, the overall homogeneous transformation matrix can be derived using Denavit – Hartenberg matrix which is 
given in equation (12); thus, the position and orientation of one frame with reference to the other can be obtained using 
the parameters in Table 1. From equation (12), 
Let  Cosθί = c1  

   Sinθί = s1 

   θ1 = 350 
   θ2 = 150 
Recall the transformation of end – effector with reference to base frame stated in equation (10) 

TTTT 1
2

0
120

0
2 , ==  

 Substituting the parameters into equation (13), gives 
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1
2 θT  

c2   -s2  0     a2 c2 

s2     c2  0     a2 s2 

0    0 1       0 
0    0 0       1 
 

=)( 1
0
1 θT  

0.82 -0.57 0     27.47 

0.57   0.82  0     19.10 
  0     0 1        0 
  0     0 0        1 
 

=)( 1
0
1 θT  

c1      -s1     0     a1 c1 

s1        c1      0     a1 s1 

0       0     1      0 
0       0     0      1 

 

(13) 

(14)  

(15) 

(15) 
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Equation (17) is the transformation matrix of end – effector frame with respect to the base frame given the joint vectors. 

 

4.4 Inverse Kinematics 

Inverse kinematics is a mechanics that deals with the determination of joint displacements given a position and 
orientation (known as transformation) of the end – effector [14]. The joint angles are obtained from the end – effector 
transformation matrix given in equation (17). 

Let T (equation (18)) be the position and orientation of the end – effector. 

 

From equation (18), the total number of objective functions is 12, comprising of three vectors (each with three elements) 
and a position vector (with three elements). [nx, ny, nz]

T is normal vector (x – axis) of end – effector frame, [sx, sy, sz]
T is 

sliding vector (y – axis) of end – effector frame and [ax, ay, az]
T is approach vector (z – axis) of end – effector frame all 

with respect to reference frame [7]. Here, sliding vector represents the vector normal to the surface of distal link of end – 
effector. Thus, this vector has to be collinear with normal vector of the surface of the object at the point of contact. Hence, 
the objective function is formulated using the normal and position vectors (six components) for achieving the desired 
position with proper alignment of object and end – effector surfaces normal. That is, a single objective function is formed 
from six objective functions by weighted summation. 

Recall that TTTTT 1
2

0
120

0
2 , ===  

From equations (13) and (15), 
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nz sz az Pz   
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=T0
2  

0.6472    -0.7661   0    52.7108 

0.7661     0.6472    0      48.9779 

    0         0        1         0 

    0         0        0         1 

 

=T0
2  

0.82 -0.57 0     27.47 

0.57   0.82  0     19.10 
  0     0 1        0 
  0     0 0        1 
 

0.97 -0.26 0     37.83 
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=)( 2
1
2 θT  

0.97 -0.26 0     37.83 

0.26  0.97  0     10.04 
  0    0 1        0 
  0    0 0        1 

 

(16) 

(17) 

(18) 



149 

 

Mathematical Modelling of a Two – Link Planar...       Olusola  and  Fakolujo       J of  NAMP 
 

  

 
Since equations (18) and (19) are equal, the elements of the normal vector can be compared with that of the 

position vector. Comparing the element of row1 and column 1 of equation (18) with that of equation (19) gives 

2121 ssccnx −=          (20) 

From the trigonometric ratio 

 212121 )( θθθθθθ SinSinCosCosCos −=+    =    2121 sscc −  

 
x

x

nCos

nssccCos
1

21

212121 )(
−=+

=−=+∴

θθ
θθ

            (21) 

Substitute the value of nx in equation (17) to (21)  

 
01

21 50669.496472.0 ≈==+ −Cosθθ            (22)  

Comparing the element of row1 and column 4 of equation (18) with that of equation (19) gives 

    ( ) 1121212 cassccaPx +−=              (23) 
Substitute equation (20) into equation (23) to get 

112 canaP xx +=               (24) 
Substitute the values of Px and nx in equation (17) and a1 and a2 in Table 1 into equation (24) to get 

0
1

01
1

1

1

1

1

1

1

35

92.3482.0

82.0

82.0
5.33

47.27

5.3347.27

5.332408.257108.52

5.332408.257108.52

5.336472.0397108.52

≈
==

=

==
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+=
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From equation (22), 
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s1 c2 + c1s2 -s1 s2 + c1c2  0  a2s1c2 - a2c1s2 + a1s1 

        0          0    1  0 

        0          0   0  1 

 

)19(
 

== TT0
2  

c1    -s1     0     a1c1 
s1     c1      0   a1s1 
0      0   1     0 
0      0   0     1 

 

c2    -s2     0     a2c2 
s2     c2      0   a2s2 
0      0   1     0 
0      0   0     1 
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The joint displacements are: 
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5.0 Conclusion 
In this paper, a two – degree of freedom manipulator joint which is revolute is presented. The link parameters 

and the individual joint transformation matrices with respect to the reference frame have been derived using the Denavit – 
Hartenberg model. Detailed study was also carried out for the solution of forward and inverse kinematics of a two – link 
planar manipulator arm with emphasis on the joint angles (θ1 and θ2) and the result thus showed that a good correlation 
exist between the transformation of any point on the manipulator end – effector with respect to the base frame, given the 
joint displacements of the manipulator and the determination of joint displacements given a position and orientation of the 
end – effector.  
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