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Abstract

The application of artificial neural network (ANN) technology to the simulation of
factors affecting sorption of polycyclic aromatic hydrocarbon (PAHS) onto ripe and
unripe orange pedlsis presented in this work. A 3-layer backward propagation network
structure was applied using pattern recognition tool in MATHLAB 7.9.0 (R2009).
Optimum number of neurons in the hidden layer used was 20 with MSE value of
0.000912. Parameters such as contact time, adsorbent dosage, pH, and particle size were
used as input variables while the output of the ANN was the pollutant removal
concentration.

The study showed that neural network pattern recognition generated data for
pollutant removed using ripe and unripe orange peels agreed to a large extent with the
laboratory data. The regression correlations obtained for both ripe and unripe orange
peels closely approximated to 0.99. In general, the result of this study indicated that
particle size was the most significant factor that affects sorption of PAHs. The other
factors considered in this study affected the sorption of PAHs in the order, contact time>
pH > adsorbent dosage.
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1.0 Introduction

One of the unit operations used for the treatmértoataminated water is adsorption [1]. The proagssally is
conducted either as a batch or column study. Tiber I aimed at determining the kinetics and isothconstants while
the former is performed for determining the breedtigh curve. The pollutant removal efficiency (PR&)he most
significant output of adsorption studies with resp® wastewater treatment. The variation of PRpedées on several
factors such as adsorbent characteristics, cotitaet adsorbate concentration, temperature, adsbdosage e.t.c [2].

Modeling of the removal of contaminants from wastteams has been conducted over the years usiegrieistic
and probabilistic models [3-5], stochastic modélsgnd multiple second-order polynomial regressiodel [7]. These
models have proved to be successful in their ptiedis. However, in recent years, artificial neuratwork has become
popular as they have been reported differently taactive [8], efficient [9], more accurate and glictive than the
multivariate regression models [10]. ANN can perica human- like reasoning, learns and stores taéarship. They
are simplified models of the biological structufehaman brains. A neural network model consistaminterconnected
assembly of simple processing elements, neurorishvalie organized in layered fashion [11]. Gergrakural network
model architecture consists of three main layersinput layer (independent variables), an outpyedadependent
variables) and one or more intermediate hiddenrgajde?]. It is a collection of mathematical modtdat emulate the real
neural structure of the brain and it is made ugndividual interconnected simple processing eleseatled neurons,
arranged in a layered structure to form a netwdndkt s capable of performing massive parallel caapan. Its
architecture is illustrated in Figure 1.
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Hidden

Figure 1: Architecture of artificial neural network

ANN can perform humaltike reasoning, learns and stores relation:of the processes on the basis of the avalil
representative data set. By mimicking the netwdrkeal neuron in the human brain, ANN performs niagdrom an
input space to an output space.

Neural networks have been used as a promising itpetynwhen complex reaction systems cannot beidetitified,
or in the case of lack of basic knowledge of reactnechanisms. It has been claimed that artifieéalral networks ar
120-5000 timedaster than phenomological models [13]. Artifici@ural network and multiple linear and rlinear
regressions are among the most widely used stactmastlels for predicting effluent pollutant conaatipn [14-15].

While regression techniquewadely used for any physical modeling purposes [1i6¢ report of [17] obtained fro
the analysis of a compiled database pertainingdsomption isotherm constants using regression aisagnd neurz
networks further suggests that regression techaifail to represent the mechanism of adsorption. Was attributed t
the fact that the ANN model gives better resultsgi@dicting results (output) from adsorption datsd They conclude
that the conventional analysis using regressiohniecie is nc suitable for adsorption experimental data since
technique fails to understand the physics of ttstesy

Advances in recent times has projected ANN astegf@asving popular choice among engineers and dsisrdas ont
of the powerful tools for prediing contamination and concentration of differeffluents and chemicals in drinkit
water, wastewater and aquifers [28}. This is hinged on the ability of artificial meal networks to relate the input a
output variables without having prior knowge of the physics of the system. The important ajg@ral condition is th
availability of an accurate and large amount ofada the system variables to train the network® fidéural network
yield solutions to complex phenomena where thetiogighip: and rules are not known The B-Propagation Network
(BPN) is one of several networks that is widelyduga predicting the output and is successfullylaopto a wide rang
of problems [2, 21].

The objective of this study is to compare datatendfects of particle size, adsorbent dosage, contae, tand pr
on the sorption of naphthalene onto ripe and uroip@ge peels obtained from laboratory experimettit simulated dat
from neural network pattern recognition tool usbagkward propagationith known hidden laye

3.0 Methodology

The following parameters are considered signifiganthe study of the sorption of PAHs: adsorbensat, pt
values, contact time, and patrticle size.

In this study, the data on adsorbent dosage, cotitae, pHvalues and particle size were obtained from litee
report on sorption of polycyclic aromatic hydrocamb onto ripe orange peels [22] and unripe oranggsp[23].
MATHLAB 7.9.0 (R2009) software was used to run #imulation. The mathlab runs a thrphase simulation which
includes
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training, validation and testing. The levenberg-guardt (Im) back-propagation algorithm was usedtffier training of
ANN model.

The trained artificial neural network model wasrthested and validated with the experimental regalestimate the
factor which most affects the sorption of PAHs ump@ and unripe orange peels.

3.1 Training

The training phase is carried out using the scategugate back propagation. The essence of thigrigaphase is to
classify the inputs according to the target aftgalglishing the relationship between the input .dataining automatically
stops when generalization stops improving as itdicdy an increase in the mean square error (M$HEjeovalidation
samples

Mean Square Error is the average squared differbatgeen the outputs and targets. Lower valuebetter. Zero
means no error.

3.2 Validation

In this phase after relationships must have betabkshed between the input data and the targéhglraining phase, a
validation analysis takes place. These are usetttsure network generalization and to halt traimihgn generalization
stops.

3.3 Testing

The trained neural network can now be tested withtesting samplesnd this will give us a sense of how well the
network will do when applied to data from the reakld. These have no effect on training and so idean independent
measure of network performance during and aftémitrg.

4.0 Results and Discussion

4.1 Identification of the optimum number of neurons

The simulation started with 2 neurons in the hid@smrer and the MSE value was found to be 11.30. figdvgons were
then increased to 4 and the MSE reduced to 2.thefuincrease in the number of neurons gave a suddesment in the
MSE value. This sudden increment was due to theraaif neural network model in which it is likenedthe human
neurons. Higher number of neurons was found to fepgstional to better accuracy of the ANN predintiolhis
observation is in agreement with literature repoft§9, 21]. At certain point when there were maorurons than that
required the accuracy of the prediction reduceshigstudy, optimum number of neurons was obtatoeoe 20 since it
has the minimum value of MSE recorded as 0.000982aa shown in Figure 2.
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Figure 2: Variation of MSE with number of neurons
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4.2 Simulated results for ripe and unripe peels using the ANN

The artificial neural network generated data wasaiolked for ripe and unripe orange peels with ANNeagated

expression 3 and 4 respectively with ranking cogdfit of 0.9997 and 0.99796 respectively. Thes&ingncorrelations
show the accuracy of using ANN pattern recognitioipredict pollutant removal concentration sinchat a very high
value of MSE close to unity. This high level of aacy of neural network makes it a good alternaitnstead of using
other traditional models like regression. The valabtained from this study indicate that thereggligible difference in
the accuracy of the predictions of ANN for both Ipggpes.

ANN has become a popular choice among engineerseirdtists as one of the powerful tools for prédg pollutant

removal because ANNs have the ability to relateiripet and output variables without having knowleag the physics
of the system, provided an accurate and large ahafuttata on the system variables to train the odta/is available.
The observed output pattern of ANN in this studgadasistent with literature report of [10, 21, 24].
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Figure 3: Variation of laboratory data with ANN generated output for ripe orange peel.
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Figure 4: Variation of laboratory data with ANN generated output for unripe orange peel.
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4.3 Comparative studies on factors affecting sorption of PAHs oatripe and unripe orange peel

4.3.1 Effect of adsorbent dosage on pollutant remed onto ripe and unripe orange peels.

For 1mg of both ripe and unripe peels, the comaéions of pollutant removed were 250 and 50megpectively. For
every coresonmding increment in the adsorbent dssdlge concentrationm removed onto ripe orangevwere greater
than thant removed onto unripe peels.
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Figure 5: Variation of concentration removed with adsorbdogage

4.3.2 Effect of pH on pollutant removed onto ripe and unripe orange peels

For pH value of 1.18 on both ripe and unripe peis,concentrations of pollutant removed were 326d 56.1 mg/l
respectively. For coresponding increment in the yddues from acidic region to the alkaline medidma toncentration
removed onto ripe orange peel were greater thanrémaoved onto unripe peels. However, concentratibpollutant

removed reduced for both ripe and unripe orangéspee
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Figure 6 Variation of concentration removed with pH
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4.3.3 Effects of contact time on pollutant removed onto ripe and unripe orange gee

Initially, the concentrations of pollutant removeeere 250 and 100 mg/l for both ripe and unripe geampeels
respectively. For coresponding increment in thetacntime, the concentration removed onto ripe geapeel were
greater than that removed onto unripe peels. Horweancentration of pollutant removed reduced fothbripe and
unripe orange peels
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Figure 7 Variation of concentration removed with contaotdi
4.3.4 Effect of particle size on pollutant removed onto ripe and unripe peel

For particle size of 0.075mm using ripe and unopenge peels, the concentration of pollutant rerdovere 9.625 and
24.63 mgl/l. increasing the particle sizes, gaveeiment in concentration of pollutant removed cqroeslingly onto ripe

and unrie orange peels.Nevertheless, concentrafipollutant removed increases for both ripe andpenorange peels.
Further study was carried out on factors affectiagption of PAHs onto ripe and unripe orange paslshown in Figure

5, 6, 7 and 8. From this study, it was found tli¢ orange peels can be suitably used for adsorbeht removal of
contaminants in aqueous solution as compared torthipe orange peels.
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Figure 8 Variation of concentration removed with particleesi
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Conclusion

In this present study, a three layer ANN with agem sigmoid transfer function at hidden layer anltihear transfer
function at output layer were used to predict theoentration of pollutant removed. The architectafréhe ANN model
had a 4-20-1 network trained with Levenberg-MarduéltM) back propagation algorithm. There was aselagreement
between the predictions by ANN and the experimewngdies. The study thus affirms that ANN providesugtable
alternative for the prediction of the concentratidrtontaminant solute removed from aqueous streams
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