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Abstract

We analyze a mathematical power law model that déss HIV infection of
CD4+ T cells. We report that the number of criticabints depends on, wheren is
a positive integer. We show that for any positiveeiger n the infection — free
equilibrium is asymptotically stable if the reprodtion number R < 1 and unstable
if Ro> 1. The method of proof involves Rene Descartégdry of positive solutions.
The graph of X(uninfected T cells), T*(infected Telis) and V(HIV virus) against
time t shows how the groups- the infected, the symible and the virus vary with
time for various values of the parameter in the nedThe results show that the
positive integem has a considerable effect on the variations of tp@ups with time.

Keywords: CD4+ T cells, critical / equilibrium points, repnaction number, asymptotic stability.

1.0 Introduction

The Human Immune deficiency Virus (HIV) is a retirog that can lead to Acquired Immune Deficiency
Syndrome (AIDS), a condition in humans which theniame system begins to fail, leading to life — theaag
opportunistic infections. HIV primarily infects it cells in the human immune system specifically @D4+ T
Cells. When CD4+T cell numbers decline below aiaaitlevel, cell — mediated immunity is lost, arig tbody
becomes progressively more susceptible to oppatianinfection which may eventually leads to Aceguir
Immune Deficiency Syndrome (AIDS). The count of CB4T Cells is a primary indicator used to measure
progression of HIV infection. In a normal persome tevel of CD4+T cells in peripheral blood is rieged at a
level between 800 cells / mm3 and 1200 cells Tnjihj.

The dynamics of CD4 + T cells and HIV infectionssHaeen a subject of vigorous research among many
researchers [2-6] . In particular [1] proposedftilowing models;

daT T

E=S—aT+rT(1— max)—KVT (1.1)
S = KVT - pT" (1.2)
= = NBT* —yV 3L
Where

S: the constant production rate hictv the body produces CD4 +T Cells from the preouin the
bone marrow and thymugy : natural turnover rate of uninfected T cells;aterat which T cells multiply though

mitosis; Tnax Maximum level of CD4+ T cells concentration i thody;(3 : natural turnover rates of infected T
cells; ) : natural turnover rates of virus practices; k 3*s0the infection rate; N:  virus particles producday
infected CD4 + T cells during its life time; T: ammtration of the susceptible CD 4 + T cells; doncentration of

infected CD4 + T cells by the HIV virus; V: free Wirus particles in the blood
2.0 Mathematical formulation

A model of HIV infection similar to equation (1.But usinéig = KVT — BT*™ wheren is a positive integer
is proposed in this paper. Thus our model is
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Les—ar+1T(1-)-kvr )
dt Tmax
aT* «
——=KVT - BT ¥ (2.1)
= = NBT* —yV )
We shall consider in this paper the cases 1,2,3,.....m,m + 1.
3.0 Methodology
LetX = % — T, then equation (2.1) becomes [1]
ax rST* rXT* KVS
E - —((l B T')X + (@1 Tmax B Tmax (a-1) —kvs
dar* _ Kvs _ pen
o = oy KXV =T | (3.1)
Y — NBT* —yV )

dt
3.1 The critical points

3.1.1 Thecasa=1.
We consider the model from equations (2.1) wits 1 below:

d_X _ _ rST* _ rXT* KVS _ \
ac (C( T')X + (a—1)Tmax Tmax (a-1) kvs

aT* KVS «

o = o KXV =BT (3.2)
L~ NBT* —yV

dt
The critical points of the system of equationsduation (3.2) by setting

4 _ ar =d—V=0are:

dt dt dt

PO = (0,0,0) and P:L: kSN _y(a_r) , (kSN _y(a_r))Tmax , (kSN _y(a_r))NﬂTmax .
kN(a-r) y+KNST Y +kNBT )

P, is the infection-free critical point anB, is the infection critical point.

3.1.2 The casa = 2
If n =2 inequation (2.1) we obtain

d_X _ _ rST* _ rXT* KVS _ \
ac (C( T')X + (a=1)Tmax Tmax (a-1) Kvs

ar* _ KVS _ %2

= s~ Kxv — T 3.3)
L~ NBT* —yV

dat
and the critical points fat = 2 are obtained as:

P, = (0, 00),

oo _ (2AS+1+VAASHT - KN(i+VAAS+1) - KN 2p(i+aAS +1)
v 2A(a -r) ’ 2Ay(a -r) ' 2Ay%(a -r) '
. [ZAS +1-Va4AS -1 -KN fL- V4AS +1) - KN gl -+/aAs +1)]
2 ’ 2Ay%(a - 1)

2A(@ -r) ' 2Ay(a -r)
Where A = KN (5 + KNAT, ., )

We can continue in this fashion for= 3,4, .....m
The caser = m (wherem is a positive integer).

3.1.3
If we letn = m in equation (2.1) we obtain
d_X _ _ rST* _ rXT* KVS _ \
at (C( T')X + (a—1)Tmax Tmax (a-1) kvs
ar* _ Kvs _ “m
at = @ KXV =BT (3.4)
Y~ NBT* —yV

at
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By settingi—f = dd—T: = i—l: = 0 in equation (3.4) to obtain
rST* rXT* KVS
—((X - T')X + m - Toae | (@=1) —KVS=0 (35)
(gff) — KXV — BT™ =0 (3.6)
NBT* —yV =0 (3.7)

It follows that V = 0 or v = N ™7 [KN(S=@n)x (3.8)
14 y(a-r)

WhenV =0 ,T*=0and X =0 i.e. the infection-free equilibrium point " = (0,00)

WhenV = Ny—BmﬂfW , an equation of degree(— 1) emerges witl{m-1) roots as solutions which
gives(m — 1) infection equilibrium points.

3.1.4 The casas = m + 1 (wherem is a positive integer)
If we letn = m in equation (2.1) we obtain

ax rST* rXT* KVS
; - —((l - T')X + (@=1)Tmax B Tmax (a-1) —KVS
ar* _ KVS _ «(m+1)
pralialrom KXV — BT | (3.9
Y~ NBT" —yV )
dt Y
By settingZ—f = dd—7: = ‘;—‘: = 0 in equation (3.4) to obtain
rST* rXT* KVS
—(a—1X+ m - Tome T @) —KVS =0 (3.10)
(EYZ — KXV — BT*(m*1 = (3.11)
NBT*—yV =0 (3.12)

It follows that T* = 0 or T* = Y& ™ |KN@-DX-KNS (3.13)
Y y(a-1)

WhenT* =0 ,V =0and X =0 i.e. the infection-free equilibrium point iP*OM = (0,0,0)

WhenT* = 1‘;—’“’7% , an equation of degree emerges withn roots as solutions. This gives
infection equilibrium points.
3.2 The translation to the origin of the infectionfree points Py, Py, Py', Pg™
Lety=X-X,,z=T*-T* ,w=V-V, } (3.14) If by

differentiating (3.14) with respect to t and theulé substituted in (3.2),(3.3),(3.4) and (3.5), veeve the translated
equations as follows:

dy _ _ rSz KSw _ ryz \

ax (le T')y + (@a-1)Tmax (a-1) Tmax KWy

dz KSw

e —Bz + —— Kwy (3.15)

Z—: =Nfz—yw }

YW (g — _ sz Ksw o o tyz

dx ((l r)y + (a—1)Tmax + (a-1)  Tmax Kwyl

E _ KSw _ 2

ol Bz + = Kwy (3.16)
‘;—‘;V =Nz —yw J

cl_y _ _ Sz KSw _ryz

ax (a r)y + (@—1)Tmax + (a-1) Tmax KWy l
dz _ KSw m

o= Bzt = Kwy (3.17)
dw _ J

e NBz —yw
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ay _ o rSz KSw  ryz \

dx (le T')y + (@=")Tmax  (@-7)  Tmax KWy

E - _ KSw _ (m+1)

™ Bz + = Kwy (3.18)
Z—: =Nfz—yw }

The reproduction parameter
The basic reproduction paramelgyris defined by [7]. In this papd, is determined by considering the fate of a

single productively infected cell in an otherwisgathy individual. InfactR,, in this case B, = ygv_sr) .

3.3 Nature of the critical points
We shall need the following theorems in the analgsithe nature of the critical points. The stapitheorems
for our system of equations in (3.15), (3.16), 3.4nd (3.18) are stated below without proof.

dx
Let — = P (X,
o i (X,y)
dy _

Theorem 3.1 [8]

Let XF(XI be a critical point of the plane autonomous system
Y1

_ [(P(xy)
X1=g (X) _(Q(X, y)j,

Where P(x,y) and Q(x,y) have continuous first dudierivatives in a neighborhood of,X
(a) If the eigenvalues of A =¢X,) have negative real part then % an asymptotically stable critical point.
(b) If A = g*(X,) has an eigenvalue with positive real part, theniskan unstable critical point.
Consider the system
Xt=HX

Where X = (le , XIEXJ , H{aﬂ alzj
Yi y A Ay

Theorem 3.2 [9]:
Consider the system
X' = 2y, X + 8,y
y' = a,X+ayy
where @; are real constants arli; a,, = a,, d,; =0, so that the origin (0, 0) is the only criticalipto

Let A, and A, be the two roots of the auxiliary equations

2 _
A= (an + ‘5‘22)/1 + (a11a22 - a21a12) = 0. Then
(a) The origin is stable ifl, and, are purely inregiy

(b) The origin is asymptotically stable if R <0 and ReA, <0

(c) The origin is unstable in all other cases

Theorem 3.3 [1] (DESCARTES’ RULE OF SIGNS)

The number of positive zeros (negative zeros) dfrmomials with real coefficient is either equal tioe
number of change in sign of the polynomial or s this by an even number (By counting down by $jv

3.2 The stability of the infection free equilibrium points

The Jacobian matrix of the system of equation8ihY), (3.16), (3.17) and (3.18) at the poiRts,P;, Py~ and
Py is
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/ (a—r) rs KS \
(@a-1")Tmax (a-1)
J(Po) =] (P5) =J(Pg") =](P5™) = _/3 (K_S)

4
The eigenvalues are given lﬂy )( /1 —/1) —%} =0ie

(~(ar=r)= A +(y+ )2+ B(2-

A= =r) ana(p+(y+ )+ ;48( Ro))

Then if @ >t > Oit follows that A, = —(ar =) is less than zero i.d, is negative.
When (/12 + (y+ ,6’)/1 + y,B(l— RO)) =0 we have

I A (A e N VN (A o Vo R (R
2 2
Nowif y>0 ,8>0and R, <1.Itfollows thatA,and A, are both less than zero id, adgare
both negative. There are no changes in sign; heticeigenvalues are all negative. Therefblgis asymptotically
stable.
Furthermore, ifR, >1and y >0, >0 then (/12 + (y+ ,6’)/1 + y,B(l— F\’O))Z O has 1 sign change
sothat all eigenvalues are not all negative. HeRgés unstable.

4.0 Numerical solutions

The equation (3.1),(3.5) and the translated equsiti{®.7), (3.8) and (3.9) were solved numericakyng
Runge-Kutta-Fehlberg method (RKF45) and resultsfercases n=1 and n=2 were compared.

4.1 Numerical solutions of the infection free crittal points PO and P*0

30 4

25 -

20 -

15 4

Figure 1. The graph of X(uninfected T cells), T*(infected T cells) and V(HIV virus) against time t
for cases n=1 and n=2

Journal of the Nigerian Association of Mathematic&hysics Volume0 (March, 2012) 125 — 130

129



Mathematical analysis of the global dynamics of..  Adeniyi and Kolawole J of NAMP

5.0

5.1

Discussion Of Results
The infection — free equilibrium of (3.2),(3.3)43.and (3.5) are asymptotically stable f R 1 and r <& and
unstable if R>1and & < r. Figure 1 shows the stability of the infectiefree equilibrium fom = 1 andn = 2.

Conclusion

In this paper, we modified an existing HIV/AIDS maddWe investigated the characteristic equation ard
discussed the stability of equilibrium points thadre not previously considered. We solved the nmttieal
modelled equations numerically (using maple 9 safewpackage which uses the Runge — Kutta-Fehlberg
method (RKF45 method) ) using realistic valuestf@ parameters and we interpreted the graph tkattee
from the numerical solutions.

Conclusively, we found that the number of critipaints depends on the value of the positive intagend that
the infection-free equilibriums in all cases coesatl is B= (0, 0, 0) showing that the infection — free
equilibrium is independent af. For any positive integd, the infection-free equilibrium point is# (0, 0, 0),
thus the positive integeR has no effect on P (0, 0, 0).The infection-free equilibrium poing=P(0, 0, 0) is
asymptotically stable if )1 and unstable if 21 for all positive integer values af
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