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Abstract 

 
We extend the tuberculosis model proposed by Blower etal. [1] by incorporating 

factors such as rates of detection and treatment of active tuberculosis (TB), proportions 
of recruited individuals due to immigration, rate at which susceptible individuals 
become infectious and the recovered class.  We prove that the solution to the model is 
positive and bounded.  We examine the stability and equilibrium states of the extended 
model with respect to the basic reproductionnumber ��.  We show that the disease-free 
equilibrium (DFE) is globally asymptotically stable if �� � � and that there exists at 
least one endemic equilibrium which is globally asymptotically stable if �� � 1.Finally, 
based on our results, we discuss optimum treatment strategies for tuberculosis 
epidemics. 
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1.0    Introduction 

Tuberculosis (TB) is an ancient disease that continues to cause epidemic and pandemic infection despite ongoing 
efforts to limit its spread [2, 3, 4, 5, 6].  Despite many decades of study, the widespread availability of a vaccine and 
more recently, a highly visableWHO  efforts to promote unified global control strategy, TB remains a leading cause of 
infectious mortality  
[6, 7, 8, 9, 10].  Although, TB is currently well-controlled in most countries, recent studies show that the overall global 
incidence of TB is rising as a result of resurgence of the disease in Africa and parts of Eastern Europe and Asia [2, 3, 8, 
11, 12, 13].  In these regions, the  emergence of drug-resistant TB strains and the convergence of HIV (human 
immunodeficiency virus) and TB epidemics have made TB control very difficult [2, 9, 14, 15, 16]. 

Tuberculosis is an infection of the lung caused by Mycobacterium tuberculosis [3,4].  Untreated individuals 
suffer severely from loss of energy, poor appetite, fever, loss of weight, night sweats and chest pain [2, 3, 4, 5, 6, 12].  
Individuals with active disease may infect others if the airborne particles they produce when they cough, sneeze, talk or 
sing are inhaled by others.  A newly infected person may take 3 to 4 weeks before transmitting the disease to others.  
Many people may not realize they are infected as TB infections are often asymptomatic for the first few years.  The first 
infection is usually latent but may develop later into active TB. 

Many mathematical models have already been proposed to investigate the complex transmission dynamics of 
tuberculosis.  See for example Blower etal. [1], Castillo-Chavez and Feng [17], Chika and Ezeofor [18], Cohen and 
Murray [19], Colijn etal. [3], Gomes etal. [20], Keeling and Eames [21], Murray and Salomon [22], Salpeter and 
Salpeter [15], Song et al. [13],Vynncycky and Fine [5], Waaler and Piot [6], among others.  In this paper, we consider 
the model of Blower etal. [1].  We shall improve on this model by incorporating certain factors that play very important 
roles in understanding the spread and control of the disease. 

 
2. The Model of Blower etal. [1] 
 Considering a three sdimensional model consisting of susceptible (S), latently infected (E) andactively  Infected 
(I).   Susceptible individuals are infected at a rate �	
 and move either into the latent class E or directly into the infectious 
class I.  In the infectious state, individuals do not recover but suffer an increased death rate due to disease.  Then, the 
Blower etal. model is given by the following equations 
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where � 
recruitment rate of susceptible individuals � 
natural death rate �� 
 death rate due to TB infection � 
 rate of slow progression � 
rate of fast progression 
In their analysis, the model is matched to TB mortality data and �� is used to derive a population threshold below which 
the disease cannot take hold. 
 
3.   EXTENSION AND MODIFICATION OF BLOWER MODEL 
 In this section, we extend the model system (1) to a four dimensional model which consists of the susceptible 
individuals (S), latently infected individuals (E), actively infected individuals (I) and recovered individuals (R).  We add 
certain factors such as proportions of recruitment due to immigration, detection and treatment rates of active TB and rate 
at which susceptible individuals recover.  Our modified model equations are as follows 
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where" 
 
 � � � 	 � � is the total size of the population and  
proportion of recruitment due to immigration % 
 detection rate of active TB ! 
treatment rate of active TB $ 
 rate at which susceptible individuals recover 
Other parameters are as defined in [1]. 
 
Lemma 3.1:  The basic reproduction number ��for model (2) is 

�� 
  ����� � ���� � !�                                                                                                           �3� 

From (3) above, we derive the following. 
 
Lemma 3.2 [23]. 

If  �� ( 1, the disease-free equilibrium )�is locally asymptotically stable;  If �� 
 1, )� is stable; if �� � 1, )�  is unstable. 
 
Lemma 3.3 [23].Let +: -0,∞� / 0 be a bounded 12 function with a bounded second derivative and let +�34� / 56 or 56 
as 7 / ∞ where  

 56 
  lim;/∞  sup +�?�@A;  

56 
  lim;/∞  inf +�?�@A;  

then  lim;/∞+ ′�34� 
 0. 

Theorem 3.1 [23].If �� ( 1, then the DFE )�  is globally asymptotically stable.  Combining this theorem with Lemmas 
3.2  and 3.3, we have that the DFE )�  is globally asymptotically stable if �� ( 1. 
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4.  EXISTENCE, UNIQUENESS AND POSITIVITY OF SOLUTIO N 
 Here, we prove that all solutions of system (2) are positive and bounded in 0D. 
Let 0E 
 �0,∞� denote the set of positive vectors F 
 �FG, F2, … , FE� with FI � 0 for all J 
 1,2, … , K.  We will use the 
following results as stated in Appendix A of Thieme [24]. 
Lemma 4.1.Let L: 0ME / 0E L�F� 
 NLG�F�, L2�F�, … , LE�F�O,   F 
 �FG, F2, … , FE� 

be continuous and have partial derivatives 
PQRPST which exist and are continuous in 0ME ,  for all J, U 
 1,2, … , K.  Then, L is 

locally Lipschitz continuous in 0ME  . 
Theorem 4.1.     Let L: 0ME / 0E be locally Lipschitz continuous and for each J 
 1,2, … , K satisfyLI�F� V 0whenever W 0ME  ,  FI 
 0. 
Then, for every W 0ME  , there exists a unique solution of F ′ 
 L�F�, F�0� 
  F� with values in 0E which is defined in 
some interval �0, X� with X W �0,∞�.  If X ( ∞, then 

sup�Y;YZ [ FI�3� 
 ∞E
I\�

 

We prove the following theorem 
Theorem 4.2.Suppose Lemma 1 holds.  Then for all 
�0� � 0, ��0� � 0, 	�0� � 0, ��0� � 0, there exists �
, �, 	, ��;   �0,∞� / �0,∞� which solve system (2) with initial condition  
 
 
�0�, � 
 ��0�, 	 
 	�0�, � 
 ��0�. 
Proof.We will apply Theorem 4.1, we define 

�
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 �1 �  �� � !	 � �	
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whereF 
 �
, �, 	, ��. 
By the properties of continuity over operations, we have the continuity of LI for all J 
 1,2,3,4. 
Further, 

�

∂FGbFG 
 ��
∂FGbF2 
 !

∂FGbF^ 
 ! � �
 "⁄
∂FGbFD  
  0 ��

��
��
��
��
�

                                                                                     �5� 

These partial derivatives exist and are continuous.  In the same way, the other partial derivatives exist and are continuous.  
In consequence, by Lemma 4.1, Lis  locallyLipschitz continuous. 
Let FG 
 
 
 0 and F2 
 � � 0, F^ 
 	 � 0, FD 
  � � 0 ,  then LG�F� 
 �1 �  �� � !	 � 0.  Now, letF2 
 � 
 0and FG 
 
 � 0,   F^ 
 	 � 0, FD 
 � � 0, 
then L2�F� 
 �1 � �� �	
 " � 0⁄ .Let  F^ 
 
 
 0 and  FG 
 � � 0, F2 
 � � 0,   FD 
  	 � 0 thenL̂ �F� 
 %�� � �� � �� � !�	 � 0.    Finally, let  FD 
 � 
 0 and  FG 
 
 � 0, F2 
 � � 0, F^ 
  	 �0, thenLD�F� 
 !$	 � !	 � 0. 
By Theorem 4.1 for every F� 
 N
�0�, ��0�, 	�0�, ��0�O W 0MD ,  there exists a unique solution of F ′ 
 L�F�, F�0� 
 F� with values in 0MD   which is defined in some interval �0, X� with X W �0,∞�.If  X ( ∞,  then sup�Y;YZN
�3� � ��3� � 	�3� � ��3�O 
  ∞                                                                     �6� 

Now, suppose that X ( ∞ and set e�3� 
 
�3� � ��3� � 	�3� � ��3�                                                                             �7� 
Then, e′ 
 ��
 � -%� � �� � ��g� � �%��
 "�	 � �� � 5e2                                        �8�    ⁄  
such that  e′ � �	 � �e                                                                                                                  �9� 
in consequence 
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Integrating  the both inequality,  we obtain 	Ke�3� � 	Ke�0� � ��3� 
which  implies that e�3� � e�0�jk; ,   3 W �0, X�                                                                                         �11� 
 
So, 
�3� � ��3� � 	�3� � ��3� 
  e�3� is bounded, a contradiction with Theorem 4.1.  In consequence, X 
 ∞.It follows 
then that the solutions of the model (2) are positive and defined on �0,∞�. 
5.   EXISTENCE AND STABILITY OF EQUILIBRIUM STATES 
 In this section, we discuss the existence and stability of the equilibria of model (2).  To study the case where 
eradicating TB is a possibility, we restrict our attention to a closed population where there is no immigration.  We assume 
there is no immigration.  Then, at equilibrium our model becomes 

�
� � �!	 � �	
 "⁄ � �
 
 0

�1 � �� �	
 "⁄ � �� � � � $�� 
 0       
%��	
 "⁄ � %�� � �� � �� � !�	 
 0     

!$� � !	 � �	� "⁄ � �� 
 0 ���
�
���                                                                                   �12� 

If a population is free of tuberculosis infection (i.e.� 
 	 
 0), system (12) reduces to 

�� � �
 
 0
��� 
 0 l                                                                                                              �13� 

Solving (13), we see that the disease-free equilibrium of model (12) is )� 
  m�� , 0, 0, 0n                                                                                                        �14� 

The other equilibrium points are as follows 

� � 
  �1 � ���	� � � � $

 
 �� � �� � !�	 � %���1 � ���	 ���

��                                                                                                                   �15� 
It follows then tha 


 
 �� � �� � !��� � � � $� � %��1 � ����1 � ���                                                     �16� 

Substituting (16) into the 1st equation of the model gives the following which is a function of 	.  So, 

o�	� 
  p�-� � �� � !��� � � � $�g � %��1 � ��� � ��1 � ����� � �� � !��� � � � $� � %��1 � ��� � !�1 � ��� q 	         �17� 

For 	 very large, o�	� � 0 always so there is always a positive equilibrium for the system. 
Now,  

o ′�r� 
  �� � �� � !��� � � � $� � %��1 � ��� � ��1 � ���!�1 � ��� � �� � �� � !��� � � � $� � %��1 � ���                     �18� 

which is negative given the condition that the numerator in o�	� is less than zero and we can now have the following.Let 

�G 
  ����� � !��� � $ � � � ���                                                                            �19� 

We observe that o�0� � 0for �� � 1,  then  o has a positive zero.  It then follows that our modified model (2) has a 
positive equilibrium for �G � 1.  Therefore, if �G � 1, then the unique positive root of o�	� 
 0 always exist.  So, from 
equation (15), it implies that model (2) has a unique positive endemic equilibrium)6 
 �
6�6	6�6�for �G � 1. 
 
6.  STABILITY OF EQUILIBRIUM STATES 

 We recall that the DFE )� from model (5.1) is given by stu , 0, 0, 0v. Linearizing our system about the DFE gives 

the following characteristics equation 

�� � w� x�$ � � � � � w��� � �� � ! � w� � ���� � !��µ � ε � ρ � µT�} 
 0                     �20� 
Thus, we have 
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�� � w� ~w2 � �2� � $ � �� � ! � ��w � �$ � � � ���� � �� � !� � ���� � !�Nµ � ε� ρ� µTO�

 0                                                                                                                                �21� 

 
We note that w 
 ��  is one of the eigenvalues and it is always negative.  To obtain the other eigenvalues, we consider 

w2 � �2� � $ � �� � ! � ��w � �$ � � � ���� � �� � !� � ���� � !��µ � ε � ρ � µT� 
 0 

       (22) 
From equation (21) we see that all roots have negative real parts iff 

�$ � � � ���� � �� � !� � ���� � !��µ � ε � ρ � µT� � 0                                                                                        �23�  
That is, if �G ( 1. If �G 
 1,  one eigenvalue of (6.2) is zero.If �G � 1, one of the roots of equation (22) has a positive 
real part.  Hence, by Lemmas 3.2 and 3.3, we obtain global asymptotic stability of the DFE.   We thus have the following 
theorem. 
Theorem 6.1.If �G � 1,  then the DFE )� is globally asymptotically stable (GAS). 
Proof.  We follow the approach in Sharomi et al. [25].  We first show that the sets               � 
  ��
, �, 	, �� W 0MD : 
 � � � 	 � � � ���                                                                                           �24� 
and �� 
 ��
, �, 	, �� W �: 
 � 
6, � � �6�                                                                  �25� 
are  positively invariant and attracting and we then find a  Lyapunov function for the model on  �. Summing the 
equations in the model gives %�G%3 
  -��1 �  �g�� � � � �� � ���G � $�� � 	� � ��	                                               �26� 
Since the right hand side of (26) is bounded above by 

u�G���tuM� � �� � ���G, it follows then that �G, �3� ( 0 if �G�3� �  

More specifically by a standard comparison theorem [25, 26, 27, 28, 29, 30],  we have that �G�3� � �G�0�j�u; �tu �1 � j�u;�.   In particular, �G�3� � tu if �G�0� � tu.  Thus
tu., � is positively invariant.  If �G�0� � tu , then either the 

solution enters � in infinite time or �G�3� approaches 
tu asymptotically and the infected variables � and 	  approach zero.  

Hence, � is attractive.  Now, using the Lyapunov function �′ 
 �� � ����′ �  ��� � $�	′ 
we  have that �′ � 0 if �G � 1 and � 
 0 iff � 
 	 
 0.  Then, it follows from the Lasalle Invariant Principle [31] that � / 0 and 	 / 0 as 3 / ∞.  That is, the disease dies out.  Since the disease-free equilibrium )� is attracting as well as 
positively invariant, then the DFE is GAS if �G � 1 (or  �� � 1). 
Remark 6.1.  Using the techniques of persistence theory [26, 29, 30, 31] we can show the uniform persistence of the 
disease and the existence of the endemic equilibrium )� of system (2). See Ref [11], for the details. 
Theorem 6.2.  The endemic equilibrium of the model system (2) is globally asymptotically stable if �� � 1. 
Remark 6.2.  If we consider our model (2) and take parameter values as follows: � 
 0.004, � 
 0.0238, � 
 0.60,� 
 0.01425, ! 
 0.37 then we calculate the basic reproduction number of the DFE of the model using (3) as �� 
0.5716 ( 1.  This shows that the DFE is GAS.  Hence, infection is temporal and the disease eventually dies out.    If we 
keep the value of  � unchanged and let  � 
 0.0088, � 
 0.0856, � 
 0.80, � 
 0.01425, ! 
 0.14. then the basic 
reproduction number is �� 
 1.1894 � 1 which implies that endemic equilibrium is globally asymptotically stable.  
Here, an average infectious individual is able to replace itself and the number of infective rises and an epidemic results. 
 
7.         DISCUSSION OF RESULTS AND CONCLUSION 
In this paper, we proposed an SEIR epidemiological model to study the transmission dynamics of TB.  We have 
investigated the global asymptotic stability of the DFE and the unique endemic equilibrium in terms of the basic 
reproduction number ��.Our results show that the basic reproduction number is a threshold parameter of the disease 
dynamics [27, 28].  In particular, we obtained global asymptotic stability of the DFE when �� � 1 and global asymptotic 
stability of the endemic equilibrium for �� � 1.  These results indicate that the disease eventually dies out if �� � 1 while 
it persists if �� � 1.  However, if the detection rate (d) and treatment rate(s) of TB is kept higher, a more stable DFE 
could be achieved for disease eradication.  The global endemic equilibrium also has important implications for disease 
control. The study of the global endemic equilibrium is essential in predicting the evolution of the disease in the long run 
so that prevention and intervention strategies can be effectively designed and public health administrative efforts can be 
properly scaled.  Undoubtedly, with improved therapies, vaccinations and strict border checks on those immigrating to 
make sure that no immigrant with tuberculosis infection is allowed entry, the possibility of reduction in the infection can  
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still be achieved.  In addition, media coverage of the disease could possibly play an important role in the control of 
tuberculosis outbreak as people follow the reports and choose to protect themselves by reducing their social activities and 
direct contacts with others, especially with those high-risk groups, which could therefore lead to a reduction of effective 
contacts between susceptible individuals and infectious individuals.  This would significantly reduce the number of 
infectives and its proportion to the total population. 
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