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Abstract

This paper is aimed to obtain results on flow of a class of compressible viscous
polymer melt molecules when state frequency transition is assigned and finite elements
considered as basis of flow analysis. When frequency error was related to to local error,
arising from finite elements scheme, it was revealed that extent of energy corrections
was directly proportional to the flow tolerance level. The processing over flow
encountered while generating finite elements was assumed to arise as a result of
increasing wave interference. Although the flow frequency was found to be increasing,
it was insufficient for improving the prescribed energy level. Conclusively, it was
assumed that the flow of the fluid being examined was naturally irregular.

Keywords: Transition states assignment, Response sensitdétygrminants, Finite elements approximate, Energy
correction.

1.0 Introduction
Let E be a measure of heat energy and e(t) benadtéieat correction. Then the corrected form ofttieoretical heat

energy equation arising from flow of a class of po@ssible viscous polymer melt molecules is prescriby

dp(E(r, e, t) — e(t))//dt=p(E(r, o, t) — e(t)) p Y (E(r, 0, t) — e(t)) +v ¥ v(r, 0, 1),
p=p(t) (1.1)

wherep is the melt density is the melt viscosity, v is the flow velocity aM=(ro/or, 0/de) is a differential operator [1].
Suppose equation (1.1) is subject to initial andra@ry conditions [2]

E(r, o, t)= E(r, 0), 0E(r, 0, t)/0t=0; 1<r <a, 0<0 <1,t>0 1.2)

E(1, 0, t)= B(t) > Ey(r, 0), E@, 1, )= 0, t >1 (1.3)
Meanwhile, let the flow frequency error of the nmlkes be

J=Io'D(E, e, t)dt (1.4)

Also letAp, AV andAT be corrections to pressure, volume and temperamrespondingly. Then the corrected version
of gas law version [3] is given by

(P -Ap)(V - AV)= Ry(T +AT), T=T(r, 0, ) - To (1.5)
For applications, choose

E(r, 0, )= pT/(Rye?), E=p(E(r, o, 1) — (1)) (1.6)
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Equations (1.1) - (1.3) yield energy states trémsiequations
dE/dt — L(E, E)= VY2 v(r,e, t), L=, V)

07p(0)= po 1.7)
such that
Elp + e()=pT/(Roe®), lim _,., e(t)= 0 (1.8)
E=E, t= 0;0E/0t= 0, 1< r <0, 0<e < 1,t>0 (1.9)
E=E>FE,r=1,e=0,t>=0; E=0, rg,e=1,t>1 (1.10)

2.0 Energy Correction

Let A be L-associated Hessian of]J [4A is singular [5], then choose sensitivitysponsel to be its robust
characteristic value andto be the corresponding tolerance index [6], [f7{r*, e*) is the corresponding characteristic
vector of A, then regular flow frequency Fr is erelisuch that

Fr=[r*, o*][d/dt — (A —AD][ r*, &*] " (2.1)
Borrowing idea from Maroni 1994 [8], the product

<, A>= 1y p(v)p*(v)dt
&, m=1/, vp(v)dt (2.2)

Such that p* is the orthogonal conjugate of theypoinial p. The foregoing constitutes flow stabilégpalysis which is
naturally endowed with corrected

yV2V(r, 0, t)= ud;Fr (2.3)
E*=E +Fr (2.4)
J=['D(E*, e, t)dt (2.5)

3.0  Approximate Finite Elements
Consider equations (1.8)-(1.10) andsfiution, choosing step lengiin= Ae= h for the difference scheme
OE“'=cq[Buy, - 2 * + B 1] E‘= dElot* (3.1)
such that g=At/h, c= q(1 + g/2) and local error
LE= c(h + 2) 3.2)

With selections ofAt= 0.2 and h= 0.5, one obtains g= 0.4, ¢=0.48 aad 0.192 The process adopted in generating the
values in table 3.1 is illustrated in figure 3.1.
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Figure 3.1: lllustration of procedure for generation ioiite elements. The process of calculation is pgegjvely top
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downwards followed by left rightwards accordingatwow directions indicated. Task is updated in Iofeedback loop
such that k=k+1 requests for readiness for nexeaytthe task.

Table 3.1: Calculated sample values

k t ij e) B B B

0 00 0 192E-01 00 05 1.0
1 02 1 192E-02 0.2 0.2 0.2
1 04 2 192E-02 0.2 0.2 0.2
2 04 2 192E-03 04 04 04
3 06 2 192E-04 0.6 - -
4 08 1 1.92E-05 0.8 - -
5 10 0 192E-06 1.0 - -

For discussions, chdse\ .y, 1= Amax 0% and
J= (10(E =FH)*+ (1 — Fr¥ (3.3)
When J was subjected to minimization proceduretf@,values in table 3.2 were obtained.

Table 3.2: Calculated sample values

E Fr J n
0.17223 0.30984 1.057350 1E-00
0.14223 0.30384 1.037250 1E-01
0.43684 0.60401 0.675310 1E-01
0.47799 0.68632 0.103242 1E-02
0.48375 0.69783 0.092343 1E-03
0.48383 0.69800 0.092341 1E-04

GO~ WONEFL,ROX

4.0 Discussion of Results

The value of internal energy correctift) was calculated as the product of toleramteevand local error value
(e(t)= <p, LE >). The calculated values were found to begpssively vanishing as the tolerance index (seke ta.1)
2D-plot of the values of E is given in figure 4.1.
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Figure 4.1: A 2-D plot of values of E. Non zero valuesioied by asterisks (*) are situated in the lowiamtular region
while the zero values are situated in the uppangular region. From technical point of view, saeho values are taken
to be due to the prevailing wave interference.

5.0 Conclusion

Judging from the pattern exhibitedtdlyle values, the prevailing energy correction is()irectly proportional to
the flow tolerance index. When i=j at k > 2, processing of values of E offew (see table 3.1). This situation was
assumed to be so due to increasing wave interferése figure 4.1). Although the flow frequencywers increasing, it
was insufficient for improving the prescribed enekgvel E in equation (3.1). Thus it is likely thiée investigated flow
of the compressible viscous polymer melt is natyialegular.
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