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Abstract 

 
In this work, we use   product rule and Leibnitz’s theorem to generate a new 

method which can be used to obtain the higher order derivatives of any functions which 
can be written as � � �����������	���.   A Theorem that establishes the new method is 
presented proved by using mathematical induction.               

 The new method does not require the knowledge of the preceding derivative before 
obtaining the succeeding ones.  
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 Introduction 
      The need for higher order derivatives of some functions are emerging in engineering, sciences and technology. The use of 
higher order derivatives of the interpolant involved is required in the implementation of some numerical integrators [1, 2, 3]. 
Thus, we present a new method for generating the higher order derivatives of functions that are dependent on three variables. 
Mathematical induction was used to prove the theorem that emerged from it. 
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If it is true for n=1, then it must be true for n=2: 

2.0     From (2), one obtains: 
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By using the Leibnitz’s theorem expression for the derivatives in (6), one obtains: 
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  Thus it follows that; 
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3.0       If it is true for n=1, n=2, then it must be true for n=k: 
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By Leibnitz’s theorem 
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Thus, for n=k, the nth order derivative is;   
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4.0    If it is true for n=k, it must be true for n=k+1: 
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This leads to  
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5.0      1st Opeenoch’s Theorem:  
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 Then the nth derivative of y is given as  
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The coefficients of the above expression are obtained by the binomial theorem. 

 

6.0        Conclusion: 

The algorithm can easily be simulated by writing subroutines for the independent variables involved. 

The following points are obvious concerning the new method: 

(i) The superscript n decreases regularly by 1 

(ii)  The superscript  i increases regularly by 1 

        (iii)        The numerical coefficients are the normal binomial coefficients. 

 For increased accuracy in most numerical methods that involve the use of higher order derivatives, this new method 
can be used to obtain higher order derivatives of the functions involved [2, 3, 4]. The labour involved in calculating and 
evaluating higher derivatives through the use of this new method is very minimal, since you can jump the process of 
obtaining the preceding derivatives to the point of obtaining desired derivative (order).  
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