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Abstract 

 
We consider the convergence rate of ECGM Algorithm for Reaction Diffusion 
Control Problem of the form  

Minimize  � ������� 	 
 	 ������ 	 ������ 	 
 	 �������� �� 
Subject to �� � � �� � � ������� 	 �������    � � �, �, �, … , � 

The work is based on the spectrum analysis of the associated control operator. 
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1.0 Introduction 
A quadratic functional is defined as: 

 
Where A is an ��� symmetric positive definite matrix operator on the Hilbert space �.   � and � are vectors in � and  ! is a 
constant term. 
The term conjugate descent with   is assumed that a sequence "#$% � #!, #&, … , #' , .. 
is available with the members of the sequence conjugate with respect to the positive definite linear operator . 
By conjugate with respect to (,  we mean that ) #$ , (#* +,�  -. 0,   01 0 . 2� 0,   01 0 � 23 
In this case, ( is assumed positive definite so ) #$ , (#$ +,+ 0. 
The conventional Conjugate Gradient Method (CGM) was originally designed for the minimization of a quadratic objective 
functional of the form stated above. Let us briefly define CGM Algorithm: 
Stages involved in Conjugate Gradient Method 

Stage 1: The first element �! 4 � of the descent sequence is guessed while the remaining members of the sequence are 
computed with the aid of the following formulae: 

Stage 2: #! � �5! � ��� 	 (�!� 

           (#! is the descent direction and 5! is the gradient of  ��� when � � �!) 

Stage 3: �$6& � �$ 	 7$#$ , 7$ �) 5$ , 5$ +,/) #$,(#$ +,      

 7  is the step length 

 
Stage 4: if 5$ for some 0 terminate the sequence else, set 0 � 0 	 1 and go to stage 3. 
The CGM has a well worked out theory with an elegant convergence profile [1]. It has been proved that the algorithm 
converges, at most, in n iterations in a well posed problem and the convergence rate is given as: 
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Where m and M are smallest and spectrums of matrix A respectively. 
That is, for an n dimensional problem, the algorithm will converge in at most n iterations. 
The CGM algorithm cannot handle quadratic cost functional of the form: 
Minimise 

 
Subject to 
               :� � ;:�<� 	 =>�<� 
For the reason that operator A was not known explicitly for continuous cost functional. Researchers came up with different 
approximation – based techniques such that could estimate 7$ that minimizes F(xi + αpi) See ref. [2]. In this fashion there 
came into being various cumbersome techniques to handle quadratic functional. Most popular among such methods is the 
conventional function space (CFS) algorithm due to Di Pillo et al. [3]. 
Since CGM algorithm cannot handle quadratic cost functional, Ibiejugba et.al developed an algorithm called Extended 
Conjugate Method algorithm (ECGM), which is based on the formalism of Conjugate Gradient Method (CGM).   
 
THE ECGM ALGORITHM [4] 
In other to determine the control operator A that satisfies the requirements for ECGM algorithm the following one-
dimensional control problem was considered [4]: 

Minimize � "?! (ax2(t) + bu2(t)} dt  
Subject to the dynamic constraint  �� �  ;��<�  	  =>�<�,  o<t<δ,  
Where a, b, c and d are constraints such that a, b > o while c and d are not necessarily positive. The problem can be 
transformed in to an unconstrained one dimensional cost problem as follows: 

<z, AZ>k =  � "?! ���@�<�  	  A>@�<�  	  B�� �  �<� –  ;��<� –  =>�<� @} dt 
Where µ (µ >o) is the penalty constant and x, u4R. 
 It has been established that the control operator A associated with this one-dimensional, equality constrained 
problem, is such that it satisfies 

 

Az(t)=D(&& (&@(@& (@@E D��<�>�<�E=D(&&��<� 	 (&@>�<�(@&��<� 	 (@@>�<�E, 
Where (&& is such that 

(&&��<�=BF� � �0� � ;��0�GH0�I< 	 B � ���J! � ;���<� cosh�< � H� =H � � O�A 	 B;P;�� � B;�Q�H� sinh�< � H� =H 	J!"�BH0�IT���0� 	 ;��0� 	 B � �� � ;���H� cosh�T � H� =H ��P! � O�A 	 B;P;�� � B;�� Q�H� sınh�T � H� =H%exp �T��P! , 

0Y < Y T 

(&@>�<� � �>�<� 	 =P=>�<�,                  0Y < Y T  

(@& � B;P=��<� � B=>�<�,         0Y < Y T  

(@@>�<� � B>�H�H0�I< � B � =>�H� cosh�< � H� =HJ! +� ;PP! =H0�I�< � H�=H 	 "B=>�0�H0�IT � � B=>�H� cosh�< �P!H� =H+B � =>�H� sinh�T � H� =H% exp�T� ,P!   0Y < Y T 
 We can now obtain the desired APi to apply when calculating gi+1 = gi + αiAPi in the ECGM algorithm which would 
hence forth allow us to exploit the simplicity of the Conjugate Gradient Method algorithm (CGM) for continuous cost 
functional.  
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Thus, on adopting the “abused” notations. 
   Jx,i = Jx (xi, ui, µ), 
 Ju,i = Ju (xi, ui, µ) 

Px,i = Px (xi, ui, µ), 
Ji = J (xi, ui, µ),        (1.26) 

Px (xi, (t), ui (t), µ) = � "JZ Jx (xi  (s), ui (s), µ) }ds, 
 

Pu (xi, (t), ui (t), µ) = � "JZ Ju (xi  (s), ui (s), µ)} ds, 
 

 � "JZ cTdu (s) Sin h (δ-s)}ds exp (δ), we can now describe the ECGM Algorithm. 
 
 
 
Steps involved in ECGM algorithm: 
Step 1 
 
It involves guessing the first sequence �!. The remaining members of the sequence are then calculated as follows: 
Step 2 #! � �5! 
(#! is the descent direction and 5! is the gradient of the cost functional when � � �!) 
 
Step3 x[6& � x[ 	 α[ P],[ u[6& � u[ 	 α[ P_,[ g],[6& � g],[ 	 α[ AP],[ g_,[6& � g_,[ 	 α[  AP_,[ P],[6& � �g],[6& 	 β[ P],[ P_,[6& � �g_,[6& 	 β[ P_,[,    
Where 

α[ � bg[, g[cbP[, AP[c   and β[ � bg[6&, g[6&cbg[, g[c  

AP[ � f�µsinhtFJ],! � cp],!G 	 µi �cj[ � cp],[k
! � cosh�t � s� ds � i Oq 	 µcTck

! QP],[ � µcJ],[ sinh�t � s� ds
	 nµsinhσo�j],! � cp],!p
	 µi FJ � cp],[G cosh�σ � s� ds � i Oq 	 µcTcQp],[ � µcj],[Qsinh�δ � s�dsk

!
T

! q exp�σ� 	 cu[�t�	 µdTdu�t�;  µocTdp],[ � dJ],[p	 µ nDu�0�Sinht � i Du[k
u �s� cosh�δ � s� ds 	 µi cTδ

O Du[�s�Sinh�σ � s�dsq exp�δ�w, 
 
and where we have used the following notations: J[ � J�x[, u[, µ) J],[ � J]�x[, u[, µ) J_,[ � J_�x[, u[, µ� p],[ � p]�x[, u[, µ� p_,[ � p_�x[, u[, µ� p_,[ � p_�x[, u[, µ� p]�x[, u[, µ� � i J]k

u �x[�s�, u[�s�, µ�ds 

and  p_�x[, u[, µ� � i J_k
u �x[�s�, u[�s�, µ�ds 
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Step 4 
If 5$ satisfies the tolerance, for some 0 terminate the sequence else, set 0 � 0 	 1 and go to step 3. 
 
 
Main Result 
Consider  

Minimize � ":&@�<� 	 
 	 :x@�<� 	 >&@�<� 	 
 	 >x@�<�%J! =<     

Subject to >� $ � :�$ � yz:$�<� 	 {�>$�<�    0 � 1,2,3, … , �               (1) 
Problem ( 1 ) is transformed into a penalized cost functional with a penalty constant B: 
Minimize  

 � ��:&@�<� 	 
 	 :x@�<� 	 >&@�<� 	 
 	 >x@�<� 	 B~>� $�<� � :$ � ;:$�<� � =z>$�<�~�@J! =<  (2) 
 
Equation (2 can be put into the following equivalent form: 

Minimize� "�:&@�<� 	 
 	 :x@�<� 	 >&@�<� 	 
 	 >x@�<� 	 B�>� $�<� � :$ �                        ;:$�<� � =>$�<���@%J! =< 

= Minimize � �F:�<�, :� �<�, >�<�, >� �<�G�F:�<�, :� �<�, >�<�, >� �<�GP� =<J!                 (3) 

Where  

� � �
�� 	 B;@ B B;=B B B=B;= B= A 	 B=@   �B�B�B�B        B        �B=       B �

� 

Define  

��B� �
�
��

��6�� 1 ;=1 1 =;= = ��6��   �1�1�1�1  1    �=    1 �
�� 

Then  
     � � B��B�. 
Denote the eigenvalues of constant matrix operator ��B� by �&, �@, ��, ��, then the eigenvalues of B are B�&, B�@, B��, B��, 
respectively because � � B�. The limit of ��B� is taken as B � ∞. 
i.e  

lim���  ��B� � lim��� �
��

��6�� 1 ;=1 1 =;= = ��6��   �1�1�1�1  1    �=    1 �
�� 

     = � �� 1 ;=1 1 =;= = ��    �1�1�1�1  1    �=    1� 

     = H. 
Given that ���� � � �H � � 0, �I��� B�& � �. 
It implies that 

��� �¡�� � � ���¡��  as � � 0 

due to the fact that zeros of a polynomial are continuous functions of its coefficients. MH and mH denote respectively, the 
largest and smallest eigenvalues of the matrix operator H. we now proceed to find the eigenvalues as follows: 
 

     ¢ �� � � 1 ;=1 1 � � =;= = ���£   �1�1�1         �1    1       �=    1 � �¢ � 0   (4) 

Expanding equation (2.4), we obtain 
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 �;@ � �� -�1 � �� ¤=@ � � �1�= 1 � �¤ � = ¥ = �1�1 1 � �¥ � ¤ = =@ � ��= �1 ¤¦ 

-  -¤=@ � � ��= 1 � �¤ � = ¥;= �1�1 1 � �¥ � ¤;= =@ � ��1 �= ¤¦ 
+  �;= ¥ = �1�1 1 � �¥ � �1 � �� ¥ ;= �1�1 1 � �¥ � ¥ ;= =�1 �1¥� 

       -¤ = =@ � ��1 �= ¤ � �1 � �� ¤ ;= =@ � ��1 = ¤ � = ¥ ;= =�1 �1¥¦ � 0. § �;@ � ��"�1 � ��O�=@ � ���1 � �� � =Q � =O�1 � �� � 1Q � �=@ 	 =@ � ��% 
-  "�=@ � ���1 � �� � = � =O;=�1 � �� � 1Q � O�=@; 	 =@ � �Q%+ ;="=�1 � �� � 1 � �1 � ��O;=�1 � �� �1Q � O�;= 	 =Q%+ "�=@ 	 =@ � � � �1 � ��O�;=@ 	 =@ � �Q � =O�;= 	 =Q% � 0 §  ;@= � �;@= 	 �@;@= 	 2�@;@ � ��;@ � ;@=@ 	 �;@=@ � �= 	 �=@ � �� � 2�� 	 �� 	 �=@ � �@=@ 	 �=@ � �@ ��;=@ � �;=@ 	 2�;@=@ � �@;@=@ � �;= � �;=@ 	 �=@ � �@ � 0         

 (5) 
Expanding and rearranging (5), we obtain 
 �� 	 ����;@ � = � 2� 	 �@�;@= 	 2;@ 	 = � =@ � 2 � ;@=@� 
    	���;@= 	 ;@=@ � = � 2=@ � 3;=@ 	 2;@=@ � ;= 	 =@�                             
 	;@= 	 ;@=@ � 0.         (6) 
It is the roots of this last quadratic equation that will give us the required eigenvalues. Using the results due to Abramowitz 
and Stegun for the solution of quadratic equation [ 5 ]  
let  
 �� � ��;@ 	 = 	 2�  
 �@ � �;@= 	 2;@ 	 = � =@ � 2 � ;@=@�  �& � ��;@= 	 ;@=@ � = 	 2=@ � 3;=@ 	 2;@=@ � ;= 	 =@�.                
 �! � ;@= � ;@=@.             (7) 
Then equation (1.6) becomes 
 �� � ���� 	 �@�@ 	 �&� 	 �! � 0.        (8) 
 
Find the real root >& of the cubic equation   >� � �@>@ 	 ��&�� � 4�!�> � ��&@ 	 �!��@ � 4�!�@� � 0 
i.e 
  >& � ��& 	 �@� � ©�ª   
where  

  �& � o� 	 �«� 	 �@�& @⁄ p& �⁄
,     �@ � o� � �«� 	 �@�& @⁄ p& �⁄

. 
and 

 « � &� ��&�� � 4�!� � &  
 � � &® ¯��@��&�� � 4�!� � 3��&@ 	 �!��@ � 4�!�@� 	 &@° �@�± 

Therefore  �&,@ � D16 �;@=@ 	 ;@= 	 2=@ � 3;=@ 	 2=��2;@ 	 =@ � ;@=@ � = � 3� 3 � 3�;@=@ 	 2;=@ � ;= � 2=�
�  127 �2;@ 	 =@ � ;@=@ � 3� 

´ µ¯&� �;@=@ 	 ;@= 	 2=@ � 3;=@ � 3;= 	 2=� � &±� 3 	 &® F�;@=@ 	 ;@= 	 2=@ � 3;=@ � 3;= 	    2=�3 � 33�;@=@ 	
2;=@ � ;= � 2=�G � 33 &@° �2;@ 	 =@ �  ;@=@ � = �  3�@±& @⁄ E& �⁄

     (9) 

The roots of equation (8) are as follows: 

�&,@ � ¶©ª� 6f©ª�· 6¸¹���w¹ �⁄ º
�¶»¹� 6µ¯»¹� ±���¼½¹ �⁄ º ´ ¾�ª@ 	 &@ ¯�ª�� 	 >& � �@±& @⁄

     (10) 

��,� � ¶©ª� �f©ª�· 6¸¹���w¹ �⁄ º
�¶»¹� 6µ¯»¹� ±���¼½¹ �⁄ º ´ ¾�ª@ 	 &@ ¯�ª�� 	 >& � �@±& @⁄

     (11) 

For these eigenvalues �$ �0 � 1,2,3, ,4� to have real values,  
 >& + �@    �! ) �@.         (12) 
Hence, the estimated value of the convergence rate of ECGM algorithm for reaction diffusion problem is given as: 
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 ¿�:, >, B� � À&�ÁÂÃFÄÅGÁÆÇFÄÅG&6ÁÂÃFÄÅGÁÆÇFÄÅGÈ
@x ¿�:!, >!, B�      (13) 

 
 
 
Conclusion 
The spectrum analysis of our control problem has allowed us to estimate the convergence rate of the ECGM algorithm for 
our control problem as given in equation (13). 
Therefore, research will continue on the numerical solution to our control problem.. 
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