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Abstract 
 
Cayley-Hamilton is one of the well-known theorems that is formulated and proved 

in linear algebra on matrices. In this paper we extend this theorem to the concept of 
rhotrix and also present some properties that are attached to it.  Rhotrix is an object that 
lies in some way between n n×  dimensional matrices and (2 1) (2 1)n n− × − dimensional 

matrices. Moreover, the representation of vectors in rhotrices is different from 
representation of vectors in matrices.  
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1.0 Introduction 
The concept of rhotrix was first introduced by Ajibade [1] as an extension of the initiative on matrix-tertions and matrix-
noitrets suggested by Atanassov and Shannon [2]. The initial algebra and analysis of rhotrices was presented in [1]. The 
multiplication of rhotrices defined by Ajibade [1] is as follows: Let R and Q be two rhotrices such that 

( )

a

R b h R d

e

=  and ( )

f

Q g h Q j

k

= .   (1) 

The addition and multiplication of rhotrices R  and Q  defined by Ajibade [1] are as follows: 

( ) ( )

a f

R Q b g h R h Q d j

e k

+
+ = + + +

+

, 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ah Q fh R

R Q bh Q gh R h R h Q dh Q jh R

eh Q kh R

+
= + +

+
o . 

 
Another multiplication method for rhotrices called row-column multiplication was introduced by Sani [3] in an effort to 

answer some questions raised by Ajibade [1]. The row-column multiplication method is in a similar way as that of 
multiplication of matrices and is illustrated using the matrices R and Q defined in (1) as follows: 

( ) ( )

af dg

R Q bf eg h R h Q aj dk

bj ek

+
= + +

+
o . 

A generalization of the row-column multiplication method for n-dimensional rhotrices was given by Sani [4]. That is: 

given n-dimensional rhotrices ,n ij lkR a c=  and ,n ij lkQ b d=  the multiplication of nR  and nQ  is as follows: 
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2 1 2 1

1

1 1

, , ( ), ( )
t t

n n i j l k i j l k i j i j l k l k
i j l k

R Q a c b d a b c d
−

= =

= = ∑ ∑o o , ( 1) / 2t n= + .       (2) 

The method of converting a rhotrix to a special matrix called 'coupled matrix' was suggested by Sani [5]. This idea was 
used to solve systems of n n×  and ( 1) ( 1)n n− × −  matrix problems simultaneously. The concept of vectors, one-sided 

system of equations and eigenvector eigenvalue problem in rhotrices were introduced by Aminu [6]. A necessary and 
sufficient condition for the solvability of one sided system of rhotrix was also presented in [6]. If a system is solvable it was 
shown how a solution can be found. Rhotrix vector spaces and their properties were presented by Aminu [7]. Linear 
mappings and square root of a rhotrix were discussed by Aminu in [8] and [9] respectively. 

To the author’s knowledge Cayley-Hamilton theorem is not extended to rhotrices.  It is the primary aim of this paper to 
extend this theorem to rhotrix and present some properties that are linked to it. 

  
2.  Rhotrix and its basic properties 
 
Let ( 1) / 2t n= +  for � � �. By ‘rhotrix’ we understand an object that lies in some way between n n×  dimensional 

matrices and (2 1) (2 1)n n− × − dimensional matrices. That is an n-dimensional rhotrix is the following: 

 

11

21 11 12

31 21 22 12 13

1 1

2 1 2 1 1 2 1 2

1 1 1 1

... ... ... ... ... ... ...

, ... ... ... ... ...

... ... ... ... ... ... ...
n ij lk t t

t t t t t t t t t t

t t t t t t

tt

a

a c a

a c a c a

R a c a a

a c a c a

a c a

a

− − − − − − − −

− − − −

= = ,   (3) 

 
Where ��� , �	
 � � for , 1,2,...,i j t=  and , 1,2..., 1k l t= − . It is straightforward to verify that the addition of n-

dimensional rhotrices ,n ij lkR a c=  and ,n ij lkQ b d= is 

 

                 ( ) ( ), , ,n n ij lk ij lk ij ij lk lkR Q a c b d a b c d+ = + = + + ,                     (4) 

 
where , 1,2,...,i j t= and , 1,2... 1l k t= − with ( 1) / 2t n= + . 

We will use throughout this paper the row-column multiplication method of rhotrices 
 defined in (2) 

Rhotrix vectors (either row vectors or column vectors) can be represented in t different ways where ( 1) / 2t n= + . 

This is different compared to vectors in matrices that can be represented in a unique way. For more information on rhotrix 
vectors the reader is referred to [6] and [7].  

The n-dimensional identity rhotrix will be denoted by nI  and is given by 
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1

0 1 0

0 0 1 0 0

... ... ... ... ... ... ...

0 ... ... ... ... ... 0

... ... ... ... ... ... ...

0 0 1 0 0

0 1 0

1

nI =
. 

 
 

 We will denote by 0 the usual zero, which is the neutral element under addition and for convenience we use the same symbol 
to denote any rhotrix or rhotrix vector whose every component is 0.  

We will now summarize some basic properties of rhotrices that will be used later on. The following properties hold 
for n-dimensional rhotrices ,A B  and C   over �  and ��: 

 
0 0

( ) ( )

( )

( )

( ) ( )

n n

A A A

A B B A

A B C A B C

A B A B

A B C AB AC

A BC AB C

AI A I A

α α α

+ = + =
+ = +
+ + = + +

+ = +
+ = +

=
= =

 

For an n-dimensional rhotrix ,n ij lkR a c= the determinant is defined as [4]  

( ) ( ) ( )det det detnR A C=  

Theorem 2.1. [4] An n-dimensional rhotrix ,n ij lkR a c=  is invertible if and only if the embedded matrices � �

������������  � � ��	
���������  are invertible. Also if the inverse of A and C are denoted by 1A−  and 1C−  

respectively, then the inverse of  nR  is 1 1 1,nR A C− − −= . 

 
3. The rhotrix polynomial 

Let  ,n ij lkR a c= be an n-dimensional rhotrix defined in (2). The powers of nR are defined as follows 

2 3 2 1 0, ,..., and n n
n n n n n n n n n n nR R R R R R R R R R I+= = = = . 

Consider a polynomial 2
0 1 2( ) ... n

nf x a a x a x a x= + = + + , where 'sia are scalars in�, we define polynomials in rhotrix 

as   
2

0 1 2( ) ... n
n n n n n nf R a I a R a R a R= + = + +  

Theorem 3.1. Let  and f g be polynomials. Suppose ,n ij lkR a c= is an n-dimensional rhotrix and λ a scalar then  

(i) ( ) ( )( ) n n nf g R f R g R+ = +  (iii) ( ) ( ) ( )n n nfg R f R g R=  

(ii)  ( ) ( ) ( )n nf R f Rλ λ=   (iv) ( ) ( ) ( ) ( )n n n nf R g R g R f R=  

Proof . The proof follows straightforwardly from definitions. 
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4. Adjoint of a rhotrix 
 

Let ,n ij lkR a c= be an n-dimensional rhotrix, � � ��������� and � � ��	
��������� the embedded matrices in nR . 

Denote by ijA  the cofactor of ija and the adjoint of A denoted by adjA  is defined as 

.
T

ijadjA A =    

Similarly, let lkC  denote the cofactor of lkc and adjC the adjoint of C is define as 

[ ] .
T

lkadjC C=  

We define the adjoint of nR as 

, .nadjR adjA adjC=  

Theorem 4.1. [10,11,12] Let A be an n n×  matrix then ( )( ) ( )( ) ( )det nA adj A adj A A A I= = . 

 

Theorem   4.2. Let ,n ij lkR a c= be an n-dimensional rhotrix. Then 

( ) ( ) 1det( ) ,det( )n n n n t tR adj R adj R R A I C I −= =  

Proof.  Let ,n ij lkR a c= be an n-dimensional rhotrix, from definitions we have , .nadjR adjA adjC=  It follows from 

Theorem 4.1 that ( ) tadjA adj A I=  and similarly, 1( ) tadjC adj C I −= . Now we have from (2) and Theorem 4.1 that 

( ) ( ) ( )
( ) ( )

( ) ( )
1

, , ,

,

,

det( ) , det( ) ,

n n n ij lk

t t

R adj R R adjA adjC a c adjA adjC

A adjA C adjC

adjA A adjC C

A I C I −

= =

=

=

=

 

and the statement now follows. 
 

Corollary 4.1. Let ,n ij lkR a c= be an n-dimensional rhotrix. If nR  is invertible then  

( ) ( ) 1 1
1det( ) det( )det ,n n n t tC AR adj R R I I −=  

Proof.  If ,n ij lkR a c= is invertible then it follows from Theorem 2.1 that the embedded matrices  and  in nA C R  are 

invertible. The statement now follows from Theorem 4.2. 

 
5. The Cayley-Hamilton theorem   

Suppose ,n ij lkR a c= is an n-dimensional rhotrix. The indeterminate rhotrix is defined as

1( ), ( )n n n ij t lk tN R xI a xI c xI −= − = − − , where 1,  andn t tI I I −  n-dimensional identity rhotrix, t-dimensional 

identity matrix and (t-1)-dimensional identity matrix respectively. The characteristic polynomial of nR  denoted by 
nRχ  is 

defined as the determinant of the negative of indeterminate rhotrix, that is 

( ) ( )det
nR n nx xI Rχ = − . 

Similarly, the characteristic polynomial of matrices A and C embedded in nR  denoted by Aχ  and Cχ respectively are 

defined as:  

( ) ( ) ( ) ( )1det  and detA t C tx xI A x xI Cχ χ −= − = − . 

It is worthy to mention here that any square matrix is a root of its characteristic polynomial, in particular 

               ( ) ( ) 0.A CA Cχ χ= =                                              (5) 

Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 43 – 48     



47 

 

Cayley-Hamilton theorem in rhotrix .        Abdulhadi Aminu         J of NAMP 
 

Theorem 5.1. (Cayley-Hamilton) Every rhotrix ,n ij lkR a c=  is a root of its characteristic polynomial. 

Proof. 

Let ,n ij lkR a c=  be an arbitrary n-dimensional rhotrix and ( )
nR xχ  be its characteristic polynomial  

( ) ( ) 1
1 1 0det ... .

n

n n
R n n nx xI R x a x a x aχ −

−= − = + + + +  

From the definitions of determinant over rhotrix, we have 

( ) ( ) ( )
( ) ( )

1

1

det det ,

det det

( ) ( )

nR n n t t

t t

A C

x xI R xI A xI C

xI A xI C

x x

χ

χ χ

−

−

= − = −

= − −
=

 

 
It follows straightforwardly from (2) and (5) that for  , 1, 2,...,i j t=  and , 1, 2,..., 1l k t= −  

 
 

( ) ( ) ( ), ,

,0 0, 0, ,0

0,0 ,

nR n A ij lk C ij lk

ij lk lk ij

R a c a c

a c c a

χ χ χ=

= =

=

 

where the first zero in the above rhotrices is a t-dimensional zero matrix while the second is a t-1-dimensional zero matrix 
with ( 1) / 2t n= + . 

 
6.0 An example 
 Consider the 3-dimensional rhotrix given in [6]:  

3

4

3 6 2

3

R = . 

The corresponding characteristics polynomial of 3R  is 

( ) ( )
3

2 3 2
3 3det ( 6) ( 1) 13 48 36R x xI R x x x x xχ = − = − − = − + − . 

Therefore, 
( )

3

3 2
3 3 3 3 313 48 36R R R R R Iχ = − + −  

 

( )
3 3

130 286

129 216 86 273 468 182

87 195

192 36 0

144 288 96 0 36 0 0 0 0

144 36 0

R Rχ = −

+ − =

 

Conclusion 
In this paper we have successfully stated and proved one of the well-known theorems in linear algebra, which is the Cayley-
Hamilton in rhotrix. Further research may concentrate on how this theorem can be applied.  
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