Journal of the Nigerian Association of Mathematical Physics
Volume 20 (March, 2012), pp 43 — 48
© J. of NAMP

Cayley-Hamilton theorem in rhotrix

Abdulhadi Aminu
Department of Mathematics,
Kano University of Science and Technology, Wudil,
P.M.B 3244, Kano, Nigeria

Abstract

Cayley-Hamilton is one of the well-known theorems that is formulated and proved
in linear algebra on matrices. In this paper we extend this theorem to the concept of
rhotrix and also present some properties that are attached to it. Rhotrix isan object that
liesin some way between nxn dimensional matrices and (2n - 1)x (2n - 1)dimensional

matrices. Moreover, the representation of vectors in rhotrices is different from
representation of vectorsin matrices.
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1.0 Introduction
The concept of rhotrix was first introduced by Ade [1] as an extension of the initiative on mateitions and matrix-
noitrets suggested by Atanassov and Shannon [4.ifilial algebra and analysis of rhotrices wassented in [1]. The
multiplication of rhotrices defined by Ajibade [i5] as follows: LeR andQ be tworhotrices such that

a f
R=(b h(R) d)andQ=(g h@Q j)- (@)
e k
The addition and multiplication of rhotricd® and Q defined by Ajibade [1] are as follows:
a+f
R+Q=({b+g h(R)+h(Q) d+]j
e+k

ah(Q) + fh(R)

ReQ={ bh(Q)+gh(R)  h(Rh(Q)  dh(Q)+ jh(R)
eh(Q) +kh(R)

Another multiplication method for rhotrices callealv-column multiplication was introduced by Sani [3] in an effort to
answer some questions raised by Ajibade [1]. The-golumn multiplication method is in a similar was that of
multiplication of matrices and is illustrated usitihg matricefR andQ defined in (1) as follows:

af +dg
RoQ=( bf +eg h(R)h(Q) a +dk
bj + ek
A generalization of the row-column multiplicationethod forn-dimensional rhotrices was given by Sani [4]. Tisat

givenn-dimensional rhotriceR | = <a1.]. ,qk> andQ, = <bIJ ,d|k> the multiplication of R, and Q, is as follows:
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&an:<aﬂl,qlkl>o<h2j2,d%>=<2(aupi-),;z'i(quw)>,t=<n+1>/z. ®)

ip]1=1

The method of converting a rhotrix to a specialrimatalled 'coupled matrix' was suggested by SahiThis idea was
used to solve systems ¢tXN and (N—1)% (N—1) matrix problems simultaneously. The concept oftmes; one-sided

system of equations and eigenvector eigenvaluelgmolin rhotrices were introduced by Aminu [6]. Acessary and
sufficient condition for the solvability of one gid system of rhotrix was also presented in [6& #ystem is solvable it was
shown how a solution can be found. Rhotrix vectoaces and their properties were presented by Arf¥huLinear
mappings and square root of a rhotrix were dis@ibgeAminu in [8] and [9] respectively.

To the author’s knowledge Cayley-Hamilton theoremnmdt extended to rhotrices. It is the primary ainthis paper to
extend this theorem to rhotrix and present sompepties that are linked to it.

2. Rhotrix and its basic properties

Lett =(n+1)/2 for n € N. By ‘rhotrix’ we understand an object that lies Some way betweemf XN dimensional
matrices and2n — 1)x (2n — 1)dimensional matrices. That is afdimensional rhotrix is the following:

&,
a21 Cll a'12
aSl C21 a'22 ClZ alS

&:<qj,c,k>: a; .. v Ay : (3)
aTt—Z Ct—lt—2 aT—:II—l Ct—z—l at—2t

a'tt—l Ct—lt—l at—lt
A

Where a;;, ¢ €R for 1, =1,2,...1 and k,1 =1,2...f — 1 It is straightforward to verify that the additioof n-
dimensional rhotricedR, = <qj ,C,k> andQ, = <bIl ,d|k> is

R+Q, = <31j ’Clk> +<qi ’dlk> :<(aﬂ +y) (6 +d'k)>' “)

wherei, j =1,2,...tandl,k =1,2..t = with t =(n+1)/ 2.

We will use throughout this paper the row-columntiplication method of rhotrices
defined in (2)

Rhotrix vectors (either row vectors or column vesiaan be representedtinifferent ways where=(n+1)/2.

This is different compared to vectors in matridest tcan be represented in a unique way. For mdoeniation on rhotrix
vectors the reader is referred to [6] and [7].

Then-dimensional identity rhotrix will be denoted Hy, and is given by
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o
o

o
o

We will denote by 0 the usual zero, which is teetmal element under addition and for convenieneaise the same symbol
to denote any rhotrix or rhotrix vector whose evesynponent is 0.
We will now summarize some basic properties ofnibes that will be used later on. The following pecties hold

for n-dimensional rhotricesA, B and C overR andaeR:

A+0=0+A=A
A+B=B+A
(A+B)+C=A+(B+C)
a(A+B)=aA+aB
A(B+C)=AB+ AC
A(BC) = (AB)C
Al =A=1A
For an n-dimensional rhotriR| = <qj ,C,k> the determinant is defined as [4]
det(R,) = de(A) defC)
Theorem 2.1. #] An n-dimensional rhotrix R, =<a1.j,clk> is invertible if and only if the embedded matrices A =

(a;))eR™and C = (c)eR*"1  are invertible. Also if the inverse of A and C are denoted by A' and C*

respectively, then theinverseof R, is R’ =<A_1,C_l>.

3. The rhotrix polynomial
Let R = <qj ,C,k> be am-dimensional rhotrix defined in (2). The powerskf are defined as follows

2 — 3 - P2 +1 _ 0_
R/ =RR, RI=RR,....R"=RR, andR/=1,.
Consider a polynomiaf (X) = &, +a,Xx = a,X* +...+a,X", wherea 'Sare scalars iR, we define polynomials in rhotrix
as

f(R)=al,+aR, =aR +..+aR]
Theorem 3.1.Let f andg be polynomials. Supposk, = <a1.j ,C,k> is ann-dimensional rhotrix andl a scalar then
O (f+gR=f(R)+g(R) @) (fg)R =f(R)g(R)
@ (Af)(R)=41(R) ™  f(R)g(R)=9(R)f(R)

Proof . The proof follows straightforwardly from definitis.
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4. Adjoint of a rhotrix

LetR, = <a1.j ,C,k> be ann-dimensional rhotrix,4 = (a;;)eR™* and € = (c;)eR1*¢"1 the embedded matrices iR, .
Denote byA; the cofactor ofg,; andthe adjoint of Adenoted byadjA is defined as
. T
adiA=[A | .
Similarly, let C, denote the cofactor af, and adjC the adjoint of Cis define as
. T
adic=[C,] .
We define the adjoint oR, as
adiR, =(adjA, adjC).
Theorem 4.1.[10,11,12] Let Abean NXN matrix then A(adj (A)) = (adj (A)) A= det(A) .

Theorem 4.2.let Rn = <a1.j ,qk> be an n-dimensional rhotrix. Then

Radj(R,)=adj(R,)R, =(det(A)l, ,detC ),,)
Proof. Let R = <a1.j ,qk> be an n-dimensional rhotrix, from definitions weveaadjR, = (ade, ade>. It follows from
Theorem 4.1 thaadjA = adj (A)l, and similarly,adjC = adj(C)I,_,. Now we have from (2) and Theorem 4.1 that
R.adj(R,) = R, ((adjA adiC)) = (a;,c, )((adjA adiC))

=(A(adjA),C (adjC))

=((adjA) A (adiC)C)

= (det(A)It ,detC )t—1> ,
and the statement now follows.

Corollary 4.1. Let R = <aij ,qk> be an n-dimensional rhotrix. If R isinvertible then

Radi (R,) = det(R, ) (el o e
Proof. If R = <a1.j ,C,k> is invertible then it follows from Theorem 2.1 titae embedded matriced andC inR, are

invertible. The statement now follows from Theorér.

5. The Cayley-Hamilton theorem
Suppose R1=<a1j,clk>is an n-dimensional rhotrix. The indeterminate rhotrix is defined as

N, =(R -x )= <(a1.j -xl,), (g, - Xlt_1)>, where |, I, andl,_; n-dimensional identity rhotrix,t-dimensional

identity matrix and t¢1)-dimensional identity matrix respectively. Thiearacteristic polynomial of R, denoted by,\/& is
defined as the determinant of the negative of ewbeihate rhotrix, that is

Xe, () =det(xI,-R)).
Similarly, the characteristic polynomial of matrse® andC embedded irR, denoted by, and X respectively are
defined as:

Xa(x)=det(xl, = A) andy, (x)= detxl,, -C).
It is worthy to mention here that any square masia root of its characteristic polynomial, in feular
Xa(A)=x.(C)=0. 5)
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Theorem 5.1. (Cayley-Hamilton)Every rhotrix R, = <aij ,qk> isaroot of its characteristic polynomial.
Proof.

Let R = <a1.j ,qk> be an arbitrary-dimensional rhotrix anq)(& (X) be its characteristic polynomial

Xe (X)=det(xl, -R)=x"+a X"+ .+ax+a,
From the definitions of determinant over rhotrixe ave

Xz () =det(xl, -R,) = de{(xl ,—A X1, ,C))
=det(xl ,~A) de(xl _,—C)
= Xa(¥)xc (%)

It follows straightforwardly from (2) and (5) théatr i, j =1,2,...1 and I,k=1,2,...1 -

Xe (R)=xa((3).6)) xe (3.6 )
:<a1j,0><0,qk>:<0,qk><aﬁ C)

=(0,0),

where the first zero in the above rhotrices isdanensional zero matrix while the second tsladimensional zero matrix
witht = (n+1)/2.

6.0 An example
Consider the 3-dimensional rhotrix given in [6]:

The corresponding characteristics polynomiaRyfis

Xe, (X) =det(xl;-R)) = (x— 6f x— 1)=x*~ 1%*+ 4&- 3.

Therefore,
Xr, (R3) = R33—13R32+ 48R,—- 34,
130 286
Xe (R)=(129 216 86)-( 273 468 18
87 195
192 36 0
+(144 288 96)—-( 0 36 = 00
144 36 0
Conclusion

In this paper we have successfully stated and prove of the well-known theorems in linear algebvhich is the Cayley-
Hamilton in rhotrix. Further research may concestan how this theorem can be applied.
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