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Abstract

We survey a general method for solving nonlineamterval systems of
equations. In particular, we paid special attenticto the computational aspects of
linear interval systems since the bulk of computats are done during the stage of
computing outer estimation of the including lineanterval systems. The height of our
findings is the synchronization of Hansen's theoremwith that due to Rohn to
accelerate basic convergence characteristics of ouethod. We compare computed
results with those obtained by Sainz et al whereuklaer interval arithmetic was
applied on interval Jacobi iterative type method cafiound out that our proposed
method gave quite impressive results.

Keywords: nonlinear interval systems of equations, internedton method, Hansen’s method, Rohn’s method,
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1.0 Introduction
The paper considers the major steps to be taken filing solution of nonlinear interval systemeafuation
F(x)=0 (1.2

with F:IDOIR" - IR",  FhasatleastC' (ID) , [x, ,)Ei ] is aninterval and

n -
xO[x]. [X]= I_l( [X,%]) isan ndimensional Cartesian product often cal@dx in IR" .
=1 -

Computer arithmetic can be applied to rigorousliyfyghe existence or absence of zeros in the égudt1 aided by the
use of interval extensions and computational figeaht theorems. Such examples of fixed point the=oimclude Contraction
mapping theorem, Brouwer fixed point theorem andakla’s theorem.

A contractor in interval arithmetic is a map thaplaces a domain containing a solution set to énsbf interest with a
smaller one that also contains the solution set.

Miranda’s theorem [1] asserts that : “Supposixgl IR" , and assuming the faces of x be denoted by

7
X, :(xl,xz,...,xi_l X ,xm,...,xnj ,

_ T
X :(xl,xz,...,&_l,)q,...,xnj

Let F = (fl, fy fn)T be a continuous function defined xnif

FU(x)F(x) <O

for each i between 1 and n, then there isxdd X such thatF (X) =0.
Fundamentally, the nonlinear system (1.1) is trmmséd into equivalent linear interval system

FO)=F)+ I x)(X= %), (1.2)
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oF, -
x,x, 0ID andJ(x,xc):(i(xC +0 (x—xc))]D IR™ i, j=12...n
]

Here IR™ genotes the real interval matrix,d (i =1,2,...n) are some numbers lying between 0 and 1. Assur‘n'ﬂtd(E
approximates x very closely to the solution of peof (1.1).The interval Jacobian matrix is thentdplithe form

J(X) =M (x) = N(X) M(x) and N(x) D IR™. A convergent iterative sequence may be writeen a

X =x,-M (x)‘l{N(x)(xc - x*)+ F(xc)} , (1.3)

which may be compared with well known iteratiof2}f Hence forth, we signify A(x) to represent thecobian matrix J(x),
the [b] represents the evaluation of F([x] ). Thétsng of J(x) will take the form

[AX)]= [M()]-IN(x)] 4L
Basic interval methods for doing this is the welblvn IGA( [A],[b] ) called the interval Gaussiargatlithm. Hence, we can
develop an iteration of type

X = x, —~1GA[M ()LIN(](x, -[x]©)+b,) . b, O[b] . (L5)
The Newtonian steps is written as
[x]t ={xt) - IGA([M (x)(k)],[N(x)(k)](xgk) ~1®)+6M PN[xY, (we)
K=0,1,2,.. andX D[X]
Various iterative processes below can be denveq:[S

[X](k,o) :[X](k) ’ (1.7)
[y] (km) — X((:k) _ IGA{[M (] (k),[N(X)](k)(X((:k) _[X](k,m-l))+ bc(k)} , (1.8)
[X](k,m) - [y](k.m) ﬂ[x](k'rk) ’ (1.9)
[ =) (1.10)

Where [X] OOIR", and I is a sequence of integers.
Further splitting [5] of A(x) into
[AY)] =[D()] - [BO )] -[C(x)] CREN
could be obtained in a similar way a['lE)(X(k) )] is the interval diagonal part (ﬁfA(X(k))] . The term§ B(X(k))],

respectively[C(X(k))] are the strictly lower interval triangular and eppriangular matrices ({fA(X(k))] . The hierarchy to
the generality of methods by combining equationé)(and (1.112) under focus can be derived in thefo

LAY = F/[x¥]) (M (x¥)] =[D(x® ), [N(x® )] = [B(x¥)] +[C(x¥)], 1, =1, and T, arbitrary, we have the
case of Newton —Like single step method and itsificadion. Again setting

[A(X(k))] =[M (X(k))] =F’ ([X(O)])[N(X(k))] =0,r, =1, a simplified Newton’s method is obtained.

Now using[M (X(k))] —[N(X(k))] as triangular splitting ofA(X(k))] a modification of equations (1.9) and (1.10) is
derived in the form:

[x]i‘k'"”:{xﬁﬁ) ([m TEXEa )]][Z[ m(x* (é,k?-[xl%k’)+([N<x<k’>1(x£k>—[x]“‘”))i+b§ﬁ’j}ﬂ[x}§k“‘”

(l<i<n). (1.12)

The remaining sections in the paper have beengedhas follows.

Section 2 of the paper presents the methodologyppfoach to the problem wherein preconditionedalesystem of
equation (1.1) can be solved via generalized HaSssaigupta method . We took note of regularity ¢drval matrix A and
necessary conditions for convergence are statesymghronizing Hansen’s theorem [6] with those ohRe theorems [7,8].
Section 3 in the paper gives numerical illustratwith the methods under investigation. We concluttedpaper based on
the findings computed from these results with thethads.
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2.0 Methodology
In the presentation of our methods we follow [8}nal as [9]. We also collaborate with the ideassanted in [10] which
enable the construction of inverse interval matrithout using input interval data.
Definition 2.1

The mappingG : ID O IR" - IR" is called a contraction it [ ID if G maps K into itself and if there exisf8 [ R
such thatQ < 8 <1 for which

IG(x) - G(y)| < B|x-y| Ox,yOK (2.0)
Here [ is called a contraction factor of G (in K). Thugey contraction in K is Lipschitz continuous .
As a follow up to our discussion we have
Theorem 2.1, [11]. Let the mapping : ID O IR" - IR" be a contraction in the convex skt [J ID. Then G has
exactly one fixed pointX’ 0 K and the iterationX(k+l) = G(X(k)) converges forx® 0K at least linearly tox(") . The
relation

=1 -
and

)

1+4 1-p
hold good ,in which cas8 denotes a contraction factor of G.

In what follows, writingX_, X" Ox,x ON(X, X.), X OH(X, X.) , the iteration defined by

<}t

x© =x,

w41 = N(X(k), ng))ﬂ x® (k=0,1,2,..) (2.2)
and

X(O) = X,

X(k+1 =H (X, Xc)’ (k=0,1,...), (2.3)

k)

for suitable ng) 0x™ defines convergent interval methods.

Equation (2.3) defines Hansen- Sengupta methods ThiX™ # @, Z= X" = X_ satisfies
z.=0 and z=H (X°°,XC°°)— X< = F(RA,—RF (XC°° ) Z), |7 < (RA)'lrad(— RF(X? )) =0; R is apreconditioning

matrix and is the expression defined in equatiB)(while that equation (2.2) defines the mathérabformula written as
equation (1.11). We assume that R is regular sikeis regular, and thatp(RA)<1 holds .We also take note that

A= %(A— A) is the radius of interval matrix A. The Hull oftémval linear system of equation (1.2) for whicleival

matrix A is regular is given by the equation

3 (Ab)={dOR": Ad =b, for someATA,bb. (2.4)
It is the smallest interval vector that contaEs(A, b).
Theorem 2.2 , [6] .

Let M =[M,M] where M=RA, r=Rb , assuminlyl > 0O, defining

r fori=|

W) = _
ma{—rj,er for j #i,j=12...,n
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r; for j =i

t¥) = ]
min(r. r.j for j #i, j =12,...,N

17

1

SR VR

Then the hull of the interval linear system (1) i
M "r =[c_i,c_i} (2.5)
With
ceM it for d =0

Q
1

(2.6)

- leM*tD for d <0

i} T L) n
M™s for di =0
d =15 - 2.7)
ce M s for di <0
and i=1,2,..,n ,Q is the unit vector whose i- th coordinate is 1 alhaf whose coordinates are 0.

Introducing the following theorem we are able ttvedhe preconditioned system:
Theorem 2.3, [7]. Let M be inverse positive. Thdl bfiequation (1.2) is

MHr:[q,d] . (2.8)

The following are defined in the form

d = min{di ,C, q}

éi = max{&i e d.}
and

r

)

d = -d’ + (M ‘1)“£F+

Ji (2.9)

d =) (r-]r

(-

_ 1
M (Vi) —15(0’1) (2.10)

r is the preconditioned interval vector of theteys under consideration.
We synchronize the ideas given in [6] with tha{4fL0] from which we are able to provide hull ofig®mn set to the linear
interval system of equation.
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First using the fact thdt—G = | — RA, whereG = || - M| +|R|A, it is known [12] that(| —|G|)_l = (I - RA)_l,

and that |R|AS (l —|| - RAD_IHA remains valid. Next lettinlyl , = (I —‘Ac_l‘A)_l >0,R, = A", the
[A —AA +A] ~ enclosure is given by the equation

[A -a,A +a]F =[R-(M -1)R,R+(M - 1)R]. (2.11)
The convergence of the linear interval system igepliby the following considerations. R is the @pgmate inverse of A
and | be the identittn X N matrix, ||RA— |||w <1, implies A™ exists and the computed approximate soluthriJ[d]
satisfies error estimate
”R(Ad c b)”oo

@1
1-|Ra 1],

d, - A7b|_ <

3.0 Numerical Examples
Consider the following problem 1 taking from [13].
[46] [-90] [012] [23] [59] [-23-9] [15.23] [-10.95]
[oa] [e10] [-1a] [-13] [-51] [u8] [-3-1]| |[3524]
[03] [-20-9] 1277] [- 630] [03] [-181] [01] |=|[-62]
[-41] [-1a]  [-31] [35] [s9] [12]  [14] | |[s07]
[03] [os] [020] [-15][814] [-61 [1017]| |[495]
[-7.-2] [12] [714] [-31] [02] [35]  [-21] | |[- 646]
[-15] [-32] [08] [t1] [-510] [27] [682] [- 265]
The following results in Table 1 were obtained [¥8jen dual interval arithmetic was applied on Jadebative method .
Let us note that a generalized interdl[1 KR (Kaucher arithmetic) is an interval whose boundsret constrained to be

ordered. For example-11] (J IR is a proper interval anfl,—1] [J IR is an improper one. Dual arithmetic is an example o

this class, for example Dual[x,y]=[y,X].
Table 1. Results computeadimfproblem 1 by [13] using Kaucher interval arithmetic on Jacobi iteration

Results [-34.3722, 22.5419]
[-11.6389, 26.3712]
X = [-3.5476, 4.5974]

[-18.0057, 27.0072]
[-15.2489, 13.8566]
[-31.9411, 4.2934]
[-3.7336, 6.5295]

Table 2. Results of Problem 1 obtained when Haagkaorem [6] is used in conjunction with Rohrfiebrems, [7, 10].

Results [-42.3264, 26.009]
X = [-11.2591, 32.8422]
[-3.8298, 5.0058]
[-17.3622,32.9102]
[-19.4266, 13.8837]
[-27.1786, 15.2843]
[-4.3883, 7.8786]

Table 3 Results of Problem 1 in floating pointtamietic

Results -8.1627
X = 10.7915
0.5880
7.7740
-2.7715
-5.9472
1.7451
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4.0 Conclusion

We have presented the general over view in soleinginear interval systems. In particular, a greatéention was paid to
the computational aspects of the resulting linetarval system since the bulk of work is done andhter approximations in
the including disks. As a result of this, a synctization of [6] result was made with those obtaibgd7, 10] which was
used to accelerate some basic convergence chastctbehaviour in the computed results. We alsmgare notes with
those of [13] where Kaucher interval arithmetic \@@glied on interval Jacobi iterative method. Thedain in our findings

is that our proposed approach gave quite impressisalts compare to those of [13] as revealed inl€kal and 2. Table 3
shows results computed where our computations warged out in real floating point arithmetic. Ibllbws that our

proposed technique can be used to give worst aase lunds in computing problems where both lin@ad nonlinear
issues are involved.
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