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Abstract

This paper describes the set of harmonic functions on a given open set U which
can be seen asthe kernel of the Laplace operator and is therefore a vector space
over R .It also reviews the harmonic theorem, the dirichlet problem and
maximum principle where we conclude that the application of sums, differences
and scalar multiples of harmonic functions are again harmonic.
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1.0 Introduction
In mathematics, mathematical physics and the thebtochastic processes, a Harmonic function tiwiee continuously

differentiable function f :U — R(where U is an open subset dR") which satisfies Laplace’s equation, i.e

0°f  a°f 0°f
+ +...+
ox 0% 0%,
annulus [1].

Harmonic functions are determined by their singtis. The singular points of the harmonic funcicare expressed as
“charges” and “charge densities” using the ternogglof electrostatics, and so the correspondinghbaic function will be
proportional to the electrostatic potential duethese charge distributions. Each function will gielnother harmonic
function when multiplied by a constant, rotatedd/an has a constant added. The inversion of eaohbtiin will yield
another harmonic function which has singularitidsol are the images of the original singularitiesispherical “mirror”.
Also, the sum of any two harmonic functions wikld another harmonic function [1, 2].

If f is a harmonic function on U, then all partirivatives of f are also harmonic functions on U. The Laplace dpesnd

the partial derivative operator will commute onsthilass of functions. The harmonic functions aral wnalogues to
holomorphic functions. All harmonic functions amadytic, i. e, they can be locally expressed asgrseries [3].
The uniform limit of a convergent sequence of harimdunctions is still harmonic. This is true besauany continuous

function satisfying the mean value property is hamim. Consider the sequence ofro,Q)x Rdefined by

= 0 everywhere on U. This is usually written B¥ f =0, an harmonic function defined on an

=1 ; ; ; i .
f. (X, y) =+exp(nx)cos(y) This sequence is harmonic and converges unifotoihe zero function; however note

that the partial derivatives are not uniformly cergent to the zero function.
Subharmonic Functions
A C? function that satisfies1f > Ois called subharmonic. This condition guaranteas tihe maximum principle will hold,

although other properties of harmonic functions rfaly More generally, a function is subharmonicifd only if, in the
interior of any ball in its domain, its graph lieslow that of the harmonic function interpolatitg boundary values on the
ball [1].

Let U be adomain, i.e a connected open kétl] R?, and 0U be its boundary. Suppose that its closﬂeis a
homogeneous body and its boundary is electricdirged, the charge given by some continuous fumaio 0U - R.

The Dirichlet problem asks for the voItagla( X) at some poink [JU . Kirchhoff's laws state thatimust be a harmonic

function inU .
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Basic features of Harmonic Function

Let U O RY be a domain. A functiod :— Ris harmonic (ot ) if it is twice continuously differentiable andyrfany
xUu,

du(x) =ZL(X) 0. 1)

if instead of the last condition onlylu(X) = 0, then the functiorl is calledsubharmonic.
We have two useful reformulations of the harmogiciondition, called thenean value properties which do not make
explicit reference to differentiability.

THEOREM 1: Let U [0 R® be a domain and leti : U — Rbe measurable and locally bounded. The followingdiions
are equivalent:

0] Uis harmonic;

(i)  ForanyballB(x r) U, u(x)= L(B( ))IBW)U( y) dy

_ 1

@iy  ForanyballB(x r) U, u(x) —mjam”)u( Vo, (),

where g, | is the surface measure ofB(X, ).
we use following version of Green’s identity,

ou
[an 5 (D90, (N = [ s DU Y dy @
where n(y) is the outward normal of the ball aTlge result can also be proved by purely probaluliseans.
Proof. (i) = (iii)
Assumell has the mean value property (ii). Defl',ae(0,00) - Rby
l// (r) =r e J. 13B(x,r)u (y)dax,r (y)

we show thaty/ is constant. Indeed, for any> 0,

LB = LB MU= [ gy WD dy= [ (35" d 3)
Differentiating with respect togives dL(£(x,1))u(X) = ¢ (r),and therefore/(r) is constant.
Now (iii) follows from the well-known identitydL(B(x, 1))/ r = g, (0B(X,T)).
(iii) = (ii)
Fix s> 0, multiply (ii) by 0, , (0(X,r)) and integrate over all radd <r <s.
(i) = (i)
Supposeg :[0,0) - [0,0)is a smooth function with compact support[®, £) and Ig(| XD dx=1. Carying out the
integration in the condition (iii) of Theorem 1,enbtains
u() = fuy of x ) o (4)
For all X[JU and sufficiently small(]1> 0. As convolution of a smooth function with a bouddenction produces a

smooth function, we observe thdis infinitely differentiable itJ .
Now suppose thatAu # 0,so that there exists a small bg#(X, &) 0 U such that eitherAu(X) > 0,or SB(X,€),0n

Au(x) <0,or B(X,&).Using the notation from above, we obtain that

0=¢' (r)-r“’ijr)a W), ()= i Au(y)dy.

Using eq.(2), this is a contradiction.
(i) = (i)
Suppose thaf is harmonic and3(x, r) 0 U . With the notation from above and (2), we obtaiatt
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- ou -
A0 =1 [ gy 5 A0, (9) = 10 g pBu(y) dy=0 (5)
Hence(/ is constant, and aém . ¢/(r) = o,,(B(0,1)u (u) ,we obtain (jii)

Conclusively, twice differentiable functiod : U — Ris subharmonic if and only if

1
u(x)€ —————~ u dyfor an x,r)du 6
(%) L(ﬁ(x,r))jﬂ(x*r) ('y) dy y B(X, 1) (6)

This can be obtained in a way very similar to Tleeod.
Hence, a harmonic function satisfies this importpraperty, and in fact subharmonic functions sgtigfe maximum
principle.
Dirichlet Problem
Given a functiorf that has values everywhere on the boundary ofiaménR", is there a unique continuous functiotwice
continuously differentiable in the interior and Gooous on the boundary such theis harmonic in the interior and= f on
the boundary.

For a domain D having a sufficiently smooth bouyddD , the general solution to the Dirichlet problengiigen by

a9 = [, w3 52 )

whereG(x,y)is the Green’s function for the partial differettequation, and

9G(x 9 _ . v 0G0 3
o SHO.6(x3=3 0=

is the derivative of the Green’s function along itheard-pointing unit normal vecton . The integration is performed on the
boundary, with measuis The functions/(s)is given by the unique solution to the Fredholtegnal equation of the second

kind,
r9=-"0+[ 922294 ®

The Green’s function to be used in eq (8) abowvegiratl is one which vanishes on the boundagy,s) = 0

For SL1dDand X[ D. Such a Green’s function is usually a sum of tee-field Green’s function and a harmonic solution
to the differential equation.

The Dirichlet problem was posed by Gauss [4]. kt,f&auss [4] thought he showed that there is adveagolution, but his

reasoning was wrong and Lebesque and Zarembaf@aw counter examples. However, if the domain ficgently nice
there is a solution, as we will see below.

Definition: Let U be a domain ifR® and let AU be its boundary. Supposg: 0U — Ris a continuous function on its

RCh

boundary. A continuous functioil :U — Ris a solution to the Dirichlet problem with boundary valueg, if it is

harmonic onUJ and u ( X) = ¢( X) for xO0U [7].

Definition: Let U 0 R%be a domain. We say thkd satisfies thePoincare cone conditionat X [ U [8].if there

exists a cond/ based atx with opening anglex > 0,and h > Osuch thatV n B(x, h) O U°.
The following lemma will prepare us to solve thei€hlet problem for ‘nice’ domains. Recall that wenote, for any open
or closed setA 0 R*, by T(A) the first hitting time of the set A by Brownian riwt, 7 (A) =inf {t >0: B(t) O A} :

Lemmal:Let 0<a < 2rrandC, (a) 0 R%is a cone base at the origin with opening angleand

o =P o px{(ra,B(O,l)) <(G, (a))} . ©)

xdpB

Thend < 1and, for any positive intege!? and h' > 0, we have
P{(@B(z.h) < 7(C,(a)) < a*
For all X, 200 R with |X— Z| <27H, whereC, (a) is a cone based awith opening anglexr .

Proof. Obviouslya <1.If XD,B(O, 2k ) then by the strong Markov property[8]
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R{(m6(0.9)<7(cC,(a))}

< Ilj i;Z(o,z-“)PX{T(a'B(O’ Z"*‘*l)) <7(G, (a))} =a. (10)

Therefore, for any positive integdrand h* >0, we have by scalingPX{T(G,B( Z H)) < T( C (a))} < &, forall x
with [x =7 <27 H.

Theorem 2: (Dirichlet Problem) SupposeU [] R%is a boundary domain such that every boundary peatisfies the
Poincare cone condition, and supp@ges a continuous function odU . Let T(@U ) =inf {t >0: B(t) D@U} . Then

the functionu ;U — Rgiven by
u(x) = E[¢(B@U)] for xOU, (12)

is the unique continuous function harmonicldrwith U ( X) = ¢7( X) forallx[JoU .

Proof. The functionU is bounded and hence harmonicldn It remains to show that the Poincare cone camditinplies
the boundary condition. Fixz[JOU, then there is a coneC, (a) based at zwith angle @ >Qwith

C, (a) N B( zZ f’) 0 . By Lemma 1, for any positive integérand h* > 0, we have

Px{r(aﬁ(z, H))<T(Q(a))} < & -
For all xwith|X— z| <27 H. Giveng >0, there is a0 > d < hsuch that‘¢()/) —¢( Z)‘<£for all y0dU with
|Y‘ Z| < 3. For all X OU with |z— )4< raly

u(x)-u(2|=|Eg r(0 U)) -0 ¥= Ele( Br(2 V))-o k. (13)

If the Brownian motion hits the c0n€ ( ) which is outside the domaib) , before the spher@B(Z,O_), then

‘Z B 6U))‘ <Jd, and (0( )|s close to(p ) The complement has small probability. More prelgis
(13) is bounded above by
2|¢| P, { (68(2,5 } s { (0 U< r(a H 25))} < 2" +e. (14)

This implies thatlis continuous ohJ .
Conclusively, If the Poincare cone condition hadi®very boundary point, we simulate the solutibthe Dirichlet problem

by running many independent Brownian motions, istarin X [1U until they hit the boundary df) and Iettingu(X) be
the average of the values gfon the hitting points.

Example: Take a solutionV: B(O,l) — Rof the Dirichlet problem on the planar disB(O,l) with boundary condition
¢ZOB(O,1) - RLet U ={XD R:0 <| )+< ]} be the punctured disc. We claim tha(x: = [¢( B(T(a U)))})

fails to solve the Dirichlet problem old with boundary condition(l):@B(O,l) D{ C} - Rif (0(0) Z V(O). Indeed, as

planar Brownian motion is outside the domain U, gelfirst hitting time7 of U = 6B(O,1) D{ q agree almost surely

with the first hitting time 038(0,1) . Then, by Theorem 3.12J (O) =g [w( B(T))] = V(O) Z ¢( O) .

We now show the techniques we have developed soafarbe used to prove a classical result from haignanalysis,
Liouville’s theorem, by probabilistic means. Theopf uses the reflection principle for higher- dirsiemal Brownian
motion.

Theorem 3: [Liouville’s theorem]Any bounded harmonic function R’ is constant[7 ].
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Proof. Letu:R' - [— M, l\/l] be a harmonic functiok, y two distinct points iR, and H the hyperplace so that the

reflection inH takes Xto y . Let { B(t) t2 O} be Brownian motion started 4t and{g(t) =2 0} its reflection inH.
Let T(H) = min{t : B(t) [ H} and note that
{B(t):t=r(H)} d{ B(1): t=7(H)}- (15)

Harmonicity implies thatE, [u( B( t))} = u( )9 and decomposing the above irfte< T(H )andt > T(H )We get

u(3)= B[ U B Yy |+ B[ U E DYy | (a6)

A similar equality holds foiu ( y) . Now, using (15),

(=)= & BNy |~ & Ny |

u ( X) = u( y) , and sinceXand Yy were chosen arbitrarilyll must be constant.

<2Mp&r( B} -0 ast-o. Thus

Hence, the dirichlet problem for harmonic functi@ways has a solution, and that solution is unigueen the boundary is

sufficiently smooth and f(s) is continuous. Moregisely, it has a solution whedD [J C*foro <q, where &9 denotes
theHolder condition[7].

Maximum Principles

In convex optimization, the maximum principle stétat the maximum of a convex function on a commgactvex set is
attained on the boundary [9].

Harmonic functions are the classical example toctviihe strong maximum principle applies. Formaifiyf, is a harmonic
function, therf cannot exhibit a true local maximum within the domof definition off. in other words, eithdris a constant
function, or, for any point xinside the domain of there exist other points arbitrarily close tpat whichf takes larger
values [1].

Let f be defined on some connected open subset D d&ubkdean spack'. if X, is a point in D such thaf (X,) = f(X)

for all x in a neighbourhood ofxthen the functiofiis constant on D.

Harmonic functions satisfy the following maximummmiples: ifR is any compact subset of U, thigmestricted tdz, attains
its maximum and minimum on the boundaryRofif U is connected, this means tliatannot have local maxima or minima,
other than the exceptional case whegeconstant. Similar properties can be shown éitsharmonic functions

Theorem 4: (Maximum principle)Supposeu : R' ~ Ris a function, which is subharmonic on an open egcted set
UOR?,
() If Uattains its maximum i) , thenUis a constant.
(i) If Uis continuous or\j andU , thenUis bound and then,
maxu(x) _maxu(x)
xOU  x0dU

Note that if Uis harmonic, the theorem may be applied to bddmd—U. Hence the conclusions of the theorem also hold
with ‘maximum’ replaced by ‘minimum’.
Proof. (i) Let M be the maximum. Note thit ={ xOU: u( x) = M} is relatively closed iJ . SinceU is open, for

anyX [V, and then is a bglB(x, r) O U . By the mean-value property of,

M =u(x)< dy< M (17)

1
(g oo
Equality holds everywhere, and au;( y)s M for all yD,B(X, r),we infer thatu(y) = M almost everywhere on
,B(X, I’). By continuity this implieg3(X,r) OV . HenceV is also open, and by assumption nonempty. Sibkcis
connected we get thet = U . Therefore,Uis constant ok .

(i) Since Uis continuous andjis closed and bounded) attains a maximum ohj. By (i) the maximum has to be
attained ondU .
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Alternatively, Supposel,, U, : R' - Rare functions, which are harmonic on a bounded dotda ] R and continuous

onU . If u, and U, agree ondU , then they are identical.

Proof. By Theorem 4 (ii) tal, - U, we obtain that

e {w (0= w (R =25 {u( - u( =0
Hencel (X) VA ( X)for all XDU. Applying the same argument 4 - U, , one sees thsupXDU {u2 (X) - ul( X)} =G

Henceul(x) =4y, ( X)for all xOU .
We can now formulate the basic fact on which thatieship of Brownian motion and harmonic funcsmests.
Theorem 5. Suppose Uis a domain, {B(t) t2 O} a Brownian motion started inside U and

r= T(aU) = min{t >0: B(t) DOU} the first hitting time of its boundary. Lep: 0U — Rbe measurable, and such
that the functionl : U — Rwith
u(x) = E [ ¢ B(r))1{r <o} . (19

for everyXL1U , is locally bounded. Thery)is a harmonic function.
Proof. The proof uses only the strong Markov propertadwnian motion and the mean value characterimaticharmonic

functions. For a baIB( X, 5) O Ulet inf {t >0: B(t) O B( X, 5)} , then the strong Markov property implies that

u(x)= E[o(B)Hr <o} | F ()] = B[ o HO)]= ey € s ( .

Where @, ; is the uniform distribution on the sphe}B(X, 5) . Therefore,U has the mean value property and hence it is

harmonic onU by Theorem 1.

Heuristics for the proof

The weak maximum principle for harmonic functioasaisimple consequence of facts from calculus.Kelyeingredient for

the proof is the fact that, by the definition oharmonic function, the Laplacian bfs zero. Then, if xis a non-degenerate
critical point of f(x), we must be seeing a saddle point, since otherthisee is no chance that the sum of the second
derivatives of is zero.

Conclusion

This analysis shows that the set of harmonic fonstion a given open set U can be seen as the kdrhel Laplace operator

[land is therefore a vector space over R. Therefbeeapplication of sums, differences and scalatipies of harmonic

functions are again harmonic.
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