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Abstract 
 
   This paper describes the set of harmonic functions on a given open set U which 
can be seen as the kernel of the Laplace operator and is therefore a vector space 
over R .It also reviews the harmonic theorem, the dirichlet problem and 
maximum principle where we conclude that the application of sums , differences 
and scalar multiples of harmonic functions are again harmonic. 
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1.0 Introduction 
In mathematics, mathematical physics and the theory of stochastic processes, a Harmonic function is a twice continuously 

differentiable function :f U R→ (where U is an open subset of nR ) which satisfies Laplace’s equation, i.e 
2 2 2

2 2 2
1 2

... 0
n

f f f

x x x

∂ ∂ ∂+ + + =
∂ ∂ ∂

 everywhere on U. This is usually written as 2 0f∇ = , an harmonic function defined on an 

annulus [1].  
Harmonic functions are determined by their singularities. The singular points of the harmonic functions are expressed as 
“charges” and “charge densities” using the terminology of electrostatics, and so the corresponding harmonic function will be 
proportional to the electrostatic potential due to these charge distributions. Each function will yield another harmonic 
function when multiplied by a constant, rotated, and/or has a constant added. The inversion of each function will yield 
another harmonic function which has singularities which are the images of the original singularities in a spherical “mirror”. 
Also, the sum of any two harmonic functions will yield another harmonic function [1, 2]. 
If f is a harmonic function on U, then all partial derivatives of f are also harmonic functions on U. The Laplace operator and 

the partial derivative operator will commute on this class of functions. The harmonic functions are real analogues to 
holomorphic functions. All harmonic functions are analytic, i. e, they can be locally expressed as power series [3]. 
The uniform limit of a convergent sequence of harmonic functions is still harmonic. This is true because any continuous 
function satisfying the mean value property is harmonic. Consider the sequence on ( ,0) R−∞ × defined by 

1( , ) exp( )cos( ).n nf x y nx ny=  This sequence is harmonic and converges uniformly to the zero function; however note 

that the partial derivatives are not uniformly convergent to the zero function. 
Subharmonic Functions 
A C2 function that satisfies 0f∇ ≥ is called subharmonic. This condition guarantees that the maximum principle will hold, 

although other properties of harmonic functions may fail. More generally, a function is subharmonic if and only if, in the 
interior of any ball in its domain, its graph lies below that of the harmonic function interpolating its boundary values on the 
ball [1]. 

Let U  be a domain, i.e a connected open set RdU ⊂ , and U∂ be its boundary. Suppose that its closure U is a 
homogeneous body and its boundary is electrically charged, the charge given by some continuous function : Uφ ∂ → R. 

The Dirichlet problem asks for the voltage ( )u x  at some pointx U∈ . Kirchhoff’s laws state that umust be a harmonic 

function inU .  
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Basic features of Harmonic Function 

Let RdU ⊂  be a domain. A function :u R→ is harmonic (onU ) if it is twice continuously differentiable and, for any

x U∈ , 

  
2

2
1

( ) : ( ) 0.
j

d

j

u
u x x

=

∂∇ = =
∂∑       (1) 

if instead of the last condition only ( ) 0u x∇ ≥ , then the function u is called subharmonic. 
We have two useful reformulations of the harmonicity condition, called the mean value properties, which do not make 
explicit reference to differentiability. 

THEOREM 1: Let RdU ⊂ be a domain and let :u U R→ be measurable and locally bounded. The following conditions 
are equivalent: 

(i) u is harmonic; 

(ii)  For any ball ( , ) ,B x r U⊂  ( , )

1
( ) ( ) ;

( ( , )) x ru x u y dy
L B x r

= ∫ B  

(iii)  For any ball ( , ) ,B x r U⊂  ( )( , ) ,
,

1
( ) ( ) ,

( ( , )) x r x r
x r

u x u y d y
B x r

σ
σ ∂=

∂ ∫ B  

where ,x rσ is the surface measure on ( , )B x r∂ . 

we use following version of Green’s identity, 

( , ) , ( , )( ) ( ) ( ) ,x r x r x r

u
y d y u y dy

n
σ∂

∂ = ∆
∂∫ ∫B B     (2) 

where n(y) is the outward normal of the ball at y. The result can also be proved by purely probabilistic means. 
Proof. (ii) ⇒ (iii)   

Assumeuhas the mean value property (ii). Defineψ : ( )0, R∞ → by 

( ) 1
( , ) ,( ) ( )d
x r x rr r u y d yψ σ−

∂= ∫ B  

we show that ψ is constant. Indeed, for any 0,r >  

  1
( , ) 0

( ( ,1)) ( ) ( ( , )) ( ) ( ) ( ) .
rd d

x rr L x u x L x r u x u y dy s s dsββ β ψ −= = =∫ ∫  (3) 

Differentiating with respect to r gives ( ( ,1)) ( ) ( ),dL x u x rβ ψ= and therefore ( )rψ is constant. 

Now (iii) follows from the well-known identity ,( ( , )) / ( ( , )).x rdL x r r x rβ σ β= ∂  

(iii) ⇒ (ii)  

Fix 0,s > multiply (ii) by , ( ( , ))x r x rσ β∂ and integrate over all radii 0 .r s< <  

(iii) ⇒ (i) 

Suppose : [0, ) [0, )g ∞ → ∞ is a smooth function with compact support in [0, )ε and ( ) 1.g x dx=∫  Carying out the 

integration in the condition (iii) of Theorem 1, one obtains 

  ( ) ( ) ( )u x u y g x y dy= −∫       (4) 

For all x U∈ and sufficiently small 0∈> . As convolution of a smooth function with a bounded function produces a 

smooth function, we observe that u is infinitely differentiable inU . 
Now suppose that 0,u∆ ≠ so that there exists a small ball ( , )x Uβ ε ⊂ such that either ( ) 0,u x∆ > or ( , ),xβ ε on 

( ) 0,u x∆ < or ( , ).xβ ε Using the notation from above, we obtain that  

  1 1 1
( , ) , ( , )0 ( ) ( ) ( ) ( ) .d d
x r x r x r

u
r r y d y r u y dy

nβ βψ σ− −
∂

∂= = = ∆
∂∫ ∫  

Using eq.(2), this is a contradiction. 
(iii) ⇒ (i)  

Suppose thatu is harmonic and ( , )x r Uβ ⊂ . With the notation from above and (2), we obtain that 

 
Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 17 – 22      



19 

 

Harmonic Function of Poincare Cone Condition...      Raji, Adejumobi  and Ajibola     J of NAMP 
1 1 1

( , ) , ( , )( ) ( ) ( ) ( ) 0d d
x r x r x r

u
r r y d y r u y dy

nβ βψ σ− −
∂

∂= = ∆ =
∂∫ ∫    (5) 

Hence ψ is constant, and as ( )0,10
lim ( ) ( (0,1)) ,

r
r u uψ σ β↓ = we obtain (iii) 

Conclusively, twice differentiable function :u U R→ is subharmonic if and only if  

( ) ( )( ) ( ) ( ),

1

, x ru x u y dy
L x r

ββ
≤ ∫ for any ( , )x r Uβ ⊂     (6) 

This can be obtained in a way very similar to Theorem 1. 
Hence, a harmonic function satisfies this important property, and in fact subharmonic functions satisfy the maximum 
principle.  
Dirichlet Problem 
Given a function f that has values everywhere on the boundary of a region in Rn, is there a unique continuous function u twice 
continuously differentiable in the interior and continuous on the boundary such that u is harmonic in the interior and u = f on 
the boundary. 
For a domain D having a sufficiently smooth boundary D∂ , the general solution to the Dirichlet problem is given by 

( , )
( ) ( )

D

G x s
u x v s ds

n∂

∂=
∂∫         (7) 

where G(x,y) is the Green’s function for the partial differential equation, and  

( , ) ( , )
ˆ. ( , )s i

i i

G x s G x s
n G x s n

n s

∂ ∂= ∇ =
∂ ∂∑  

is the derivative of the Green’s function along the inward-pointing unit normal vector ̂n . The integration is performed on the 
boundary, with measure ds. The functions v(s) is given by the unique solution to the Fredholm integral equation of the second 
kind, 

( ) ( , )
( ) ( ) .

2 D

v x G x s
f x v s ds

n∂

∂= − +
∂∫        (8) 

The Green’s function to be used in eq (8) above integral is one which vanishes on the boundary G(x,s) = 0 
For s D∈∂ and x D∈ . Such a Green’s function is usually a sum of the free-field Green’s function and a harmonic solution 
to the differential equation. 
The Dirichlet problem was posed by Gauss [4]. In fact, Gauss [4] thought he showed that there is always a solution, but his 
reasoning was wrong and Lebesque and Zaremba[5, 6] gave counter examples. However, if the domain is sufficiently nice 
there is a solution, as we will see below. 

Definition: Let U be a domain in dR and let U∂ be its boundary. Suppose : U Rφ ∂ → is a continuous function on its 

boundary. A continuous function :u U R→ is a solution to the Dirichlet problem with boundary value φ , if it is 

harmonic on U and ( ) ( )u x xφ= for x U∈ ∂ [7]. 

Definition: Let dU R⊂ be a domain. We say that U satisfies the Poincare cone condition at x U∈ ∂ [8].if there 

exists a cone V based at x with opening angle 0,α > and 0h > such that ( , ) cV x h Uβ∩ ⊂ . 

The following lemma will prepare us to solve the Dirichlet problem for ‘nice’ domains. Recall that we denote, for any open 

or closed set dA R⊂ , by ( )Aτ the first hitting time of the set A by Brownian motion, ( ) ( ){ }inf 0 :A t B t Aτ = ≥ ∈ . 

Lemma 1: Let 0 2α π< < and ( )0
dC Rα ⊂ is a cone base at the origin with opening angleα , and  

( )( ) ( )( ){ }sup
01

0,
2

0,1x
x

P C
β

α τ β α
 ∈  
 

= ∂ < .      (9) 

Then 1<α and, for any positive integer k and 01 >h , we have 

  
( )( ) ( )( ){ } k

zx aChzP ≤<∂ ατβτ 1,
, 

For all , dx z R∈ with 
12 kx z h−− < , where ( )zC α is a cone based at z with opening angle α . 

Proof. Obviously 1α < . If ( )0, 2 kx β −∈ then by the strong Markov property[8] 

Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 17 – 22      



20 

 

Harmonic Function of Poincare Cone Condition...      Raji, Adejumobi  and Ajibola     J of NAMP 

( )( ) ( )( ){ }0,1x zP Cτ β τ α∂ <  

( ) ( )( ) ( )( ){ }1
sup 1

00,2
0

0, 2k i

k
k i k

xx
i

P C a
β

τ β τ α− +

−
− + +

∈
=

≤ ∂ < =∏ .   (10) 

Therefore, for any positive integer k and 1 0h > , we have by scaling ( )( ) ( )( ){ }1, k
x zP z h C aτ β τ α∂ < ≤ , for all x

with 
12 kx z h−− < . 

Theorem 2: (Dirichlet Problem). Suppose dU R⊂ is a boundary domain such that every boundary point satisfies the 

Poincare cone condition, and suppose φ  is a continuous function on U∂ . Let ( ) ( ){ }inf 0 :U t B t Uτ ∂ = > ∈ ∂ . Then 

the function :u U R→ given by  

  ( ) ( )( ) ,xu x E B Uφ = ∂    for x U∈ ,      (11) 

is the unique continuous function harmonic on U with ( ) ( )u x xφ= for all x U∈ ∂ . 

Proof. The function u  is bounded and hence harmonic on U . It remains to show that the Poincare cone condition implies 

the boundary condition. Fix z U∈ ∂ , then there is a cone ( )zC α based at z with angle 0α > with 

( ) ( ), c
zC B z h Uα ∩ ⊂ . By Lemma 1, for any positive integer k and 1 0h > , we have 

  ( )( ) ( )( ){ }1, k
x zP z h C aτ β τ α∂ < ≤       (12) 

For all x with
12 kx z h−− < . Given 0ε > , there is a 0 hδ> ≤ such that ( ) ( )y zφ φ ε− < for all y U∈ ∂ with

y z δ− < . For all x U∈ with 2 kz x δ−− < , 

( ) ( ) ( )( )( ) ( ) ( )( )( ) ( )x xu x u z E B U z E B U zφ τ φ φ τ φ− = ∂ − ≤ ∂ − .  (13) 

If the Brownian motion hits the cone ( )zC α , which is outside the domain U , before the sphere ( ),B z δ∂ , then 

( )( )z B Uτ δ− ∂ < , and ( )( )( )B Uφ τ ∂ is close to ( )zφ . The complement has small probability. More precisely, 

(13) is bounded above by 

 ( )( ) ( )( ){ } ( ) ( )( ){ }2 , , 2 k
x z xP B z C P U B zφ τ δ τ α ε τ δ φ ε∞ ∂ < + ∂ < ∂ ≤ ∞ + .  (14) 

This implies thatu is continuous onU . 
Conclusively, If the Poincare cone condition holds at every boundary point, we simulate the solution of the Dirichlet problem  

by running many independent Brownian motions, starting in x U∈ until they hit the boundary of U and letting ( )u x   be 

the average of the values of φ on the hitting points. 

Example: Take a solution ( ): 0,1v B R→ of the Dirichlet problem on the planar disc ( )0,1B with boundary condition 

( ): 0,1B Rφ ∂ − Let { }2 : 0 1U x R x= ∈ < < be the punctured disc. We claim that ( )( )( )( )xu x E B Uφ τ = ∂
 

fails to solve the Dirichlet problem on U with boundary condition ( ) { }: 0,1 0B Rφ ∂ ∪ → if ( ) ( )0 0vφ ≠ . Indeed, as 

planar Brownian motion is outside the domain U, and the first hitting time τ of ( ) { }0,1 0U B∂ = ∂ ∪ agree almost surely 

with the first hitting time of ( )0,1B∂ . Then, by Theorem 3.12, ( ) ( )( ) ( ) ( )00 0 0u E B vφ τ φ = = ≠  . 

We now show the techniques we have developed so far can be used to prove a classical result from harmonic analysis, 
Liouville’s theorem, by probabilistic means. The proof uses the reflection principle for higher- dimensional Brownian 
motion. 

Theorem 3: [Liouville’s theorem] Any bounded harmonic function on dR  is constant[7 ]. 
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Proof.  Let [ ]: ,du R M M→ − be a harmonic function,x y  two distinct points in dR , and H the hyperplace so that the 

reflection in H takes x to y . Let ( ){ }: 0B t t ≥ be Brownian motion started atx , and ( ){ }: 0B t t ≥ its reflection in H. 

Let ( ) ( ){ }min :H t B t Hτ = ∈ and note that 

 ( ) ( ){ } ( ) ( ){ }: :B t t H d B t t Hτ τ≥ ≥ .       (15) 

Harmonicity implies that ( )( ) ( )xE u B t u x  =  and decomposing the above into ( )t Hτ< and ( )t Hτ≥ we get 

 ( ) ( )( ) ( ){ } ( )( ) ( ){ }1 1x xt H t H
u x E u B t E u B t τ< ≥

   = +
   

.     (16) 

A similar equality holds for ( )u y . Now, using (15), 

 ( ) ( ) ( )( ) ( ){ } ( )( ) ( ){ } ( ){ }1 1 2 0
t H t H

u x u y E u B t E u B t Mp t Hτ τ τ< <
   − = − ≤ < →
   

, ast → ∞ . Thus

( ) ( )u x u y= , and since xand y were chosen arbitrarily, umust be constant. 

Hence, the dirichlet problem for harmonic functions always has a solution, and that solution is unique, when the boundary is 

sufficiently smooth and f(s) is continuous. More precisely, it has a solution when (1, )D C α∂ ∈ for 0 < α, where C(1,α) denotes 
the Holder condition[7]. 
 
Maximum Principles 
In convex optimization, the maximum principle state that the maximum of a convex function on a compact convex set is 
attained on the boundary [9]. 
Harmonic functions are the classical example to which the strong maximum principle applies. Formally, if f is a harmonic 
function, then f cannot exhibit a true local maximum within the domain of definition of f. in other words, either f is a constant 
function, or, for any point x0 inside the domain of f, there exist other points arbitrarily close to x0 at which f takes larger 
values [1]. 

Let f be defined on some connected open subset D of the Euclidean space Rn. if x0 is a point in D such that 0( ) ( )f x f x≥
for all x in a neighbourhood of x0, then the function f is constant on D. 
Harmonic functions satisfy the following maximum principles: if R is any compact subset of U, then f, restricted to R, attains 
its maximum and minimum on the boundary of R. If U is connected, this means that f cannot have local maxima or minima, 
other than the exceptional case where f is constant. Similar properties can be shown for subharmonic functions  

Theorem 4: (Maximum principle) Suppose : du R R→ is a function, which is subharmonic on an open connected set 

.dU R⊂  

(i) If uattains its maximum inU , then u is a constant. 

(ii) If u is continuous on U and U , then u is bound and then, 

     
( ) ( )max maxu x u x

x Ux U
=

∈∂∈
 

Note that if u is harmonic, the theorem may be applied to both uand u− . Hence the conclusions of the theorem also hold 
with ‘maximum’ replaced by ‘minimum’. 

Proof. (i) Let M be the maximum. Note that ( ){ }:V x U u x M= ∈ = is relatively closed in U . Since U is open, for 

anyx V∈ , and then is a ball ( , )x r Uβ ⊂ . By the mean-value property of u , 

( ) ( )( ) ( ) ( ),

1
.

, x rM u x u y dy M
L x r ββ

= ≤ ≤∫       (17) 

Equality holds everywhere, and as ( )u y M≤ for all ( ), ,y x rβ∈ we infer that ( )u y M= almost everywhere on

( ),x rβ . By continuity this implies ( , )x r Vβ ⊂ . Hence V is also open, and by assumption nonempty. Since U is 

connected we get thatV U= . Therefore, u is constant onU . 

(ii) Since u is continuous and U is closed and bounded, uattains a maximum on U . By (i) the maximum has to be 

attained on U∂ . 
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Alternatively, Suppose 1 2, : du u R R→ are functions, which are harmonic on a bounded domain dU R⊂ and continuous 

on U . If 1u and 2u agree on U∂ , then they are identical. 

 
Proof. By Theorem 4 (ii) to 1u - 2u we obtain that  

   ( ) ( ){ } ( ) ( ){ }sup sup
1 2 1 2 0.x Ux U

u x u x u x u x∈∂∈
− = − =  

Hence ( ) ( )1 2u x u x≤ for all x U∈ . Applying the same argument to 1u - 2u , one sees that ( ) ( ){ }2 1sup 0
x U

u x u x
∈

− = . 

Hence ( ) ( )1 2u x u x= for all x U∈ . 

We can now formulate the basic fact on which the relationship of Brownian motion and harmonic functions rests. 

Theorem 5: Suppose U is a domain, ( ){ }: 0B t t ≥ a Brownian motion started inside U and 

( ) ( ){ }min 0 :U t B t Uτ τ= ∂ = ≥ ∈∂ the first hitting time of its boundary. Let : U Rφ ∂ → be measurable, and such 

that the function :u U R→ with 

( ) ( )( ) { }1xu x E Bφ τ τ = < ∞  ,      (19) 

for everyx U∈ , is locally bounded. Then, u is a harmonic function. 
Proof. The proof uses only the strong Markov property of Brownian motion and the mean value characterization of harmonic 

functions. For a ball ( ),B x Uδ ⊂ let ( ) ( ){ }inf 0 : ,t B t B x δ> ∉ , then the strong Markov property implies that 

  ( ) ( )( ) { } ( ) ( )( ) ( ) ( ) ( ),,1 ,x x xB x ru x E B F E u B u y dyδφ τ τ τ τ ϖ+
∂

   = < ∞ = =   ∫% %    

Where ,x δϖ  is the uniform distribution on the sphere ( ),B x δ∂ . Therefore, uhas the mean value property and hence it is 

harmonic on U by Theorem 1. 
Heuristics for the proof 
The weak maximum principle for harmonic functions is a simple consequence of facts from calculus. The key ingredient for 
the proof is the fact that, by the definition of a harmonic function, the Laplacian of f is zero. Then, if x0 is a non-degenerate 
critical point of f(x), we must be seeing a saddle point, since otherwise there is no chance that the sum of the second 
derivatives of f is zero. 
Conclusion  
This analysis shows that the set of harmonic functions on a given open set U can be seen as the kernel of the Laplace operator 
∇ and is therefore a vector space over R. Therefore, the application of sums, differences and scalar multiples of harmonic 
functions are again harmonic. 
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