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Abstract

In this paper, we prove some stability results for multistep iteration scheme by
using maps satisfying contractive condition of integral type in a normed linear space.
Our results are generalizations and extensions of some of the results of Berinde [1],
Olatinwo [2], Osilike and Udomene [3], Rhoades [4, 5] and some other numerous results
in the literature.
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1.0 Introduction

Let E be a normed space ad: E — E a self map ofE. For X, [ E, the Mann Iteration scheme [6] is the

sequencdxn}::ogiven by
Xpp = A=a, )X, +a, TX,, (1.1)
Where{an}::o [J [01] such thatZ:a’n - 00,
n=0
For X, L E, the sequencéxn}::odefined by
Xp = A=a )X, +a, Ty,

y,=@1-8)x,+L.Tx,, n=20 (1.2)

00

wherej':a'n}:’:0 and {,Bn}::o are appropriate sequences in [0,1] such thaty, — oo is called the Ishikawa iteration

n=0
scheme [7].
For X, [ E, the sequencéx, }_, defined by
Xoo = A—a,)x, +a, Ty,
Yo = Q= 50)X, *+ BTz,
z,=@1-y)x, +ty,1x,, n=0 (1.3)

00

where{a'n}::o, {,Bn}::o and {yn}::oare appropriate sequences in [0,1] such thaty . — o is called the Noor iteration
n=0
scheme [8].
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For X, L E, the sequencéxn}::odefined by

Xpa = (L= 0,)%, +a,Ty"
Vo= W=B)%, +B Ty, " i=123.. k-2

Yo' = A= B+ BTTX,, k22 (1.4

Where{an}::o, {ﬂni }:=o , 1 =12,,...,k —1are appropriate sequences in [0,1] such E\Un — 00 is called a multistep
n=0
iteration scheme [9].

Definition 1.1. Let (X, d) be a complete metric space ahd X — X a selfmap ofX. Suppose that

F, = {p OX:T,= p} is the set of fixed points of . Let {Xn}:zo [ X be the sequence generated by an iteration
scheme involvingl which is defined by

Xpe = F(T,X,), n=012,... (1.5)

where X, [1 X is the initial approximation and is some function. Suppoe{e(n}::o converges to a fixed poiftof T. Let

{yn}:zo [0 X and sete, =d(Y,,,, F(T,y,)), n= 012,.... Then the iteration scheme (1.5) is T-stable & anly if
limy,=p

)

Ifin (1.5), f(T,x,) =Tx,, n= 012,..., then we have the Picard iteration scheme, whid@ltain the Mann iteration

scheme if

f(T,x,)=a-a,)x, +a,1x,,n=012,..,a,0[01]. (1.6)

Finally, if  f(T,x,)=(@0-a,)x, +a,Ty"
Vo= W=B)%, +BiTy, " 1=123... k-2
Yo == B %, + BT, k22, (1.7)

we obtain the multistep iteration process.

Definition 1.2 [2]. Let (X, d) be a complete metric space ahd X — X a selfmap ofX, there exista[] [01) and a
monotone increasing functioft : R* - R*with ¢(0) = 0 such that

d(Tx,Ty)<ad(x,y) +¢(d(x,Tx)), O x,yO X . (1.8)

Motivated by the contractive condition given bya@iwo [2], Branciari [10] and Rhoades [11] gave fallowing
contractive definition:

Definition 1.3 [2]. For a selfmappingl : X — X, there exists a real numbe [1 [01) and a monotone increasing
functions/,{/ : R* — R" such thaiy/(0) = 0andl] X,y X, we have
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d(Tx,Ty) d(x,Tx) d(x,y)

[ sdv)<w( [pM)dvr)+c [pt)dv() Q

where @ : R* - R'is a Lebesgue-Stieltjes integrable mapping whicuimmable, nonnegative and such that for each

£>0, J€¢(t)dv(t) > 0. (1.10)

Remark 1.4. If in (1.10), ¢(t) =1andv(t) =t, we have condition (1.8).

Lemma 1.5 [1].If O is a real number such th&t< d <1, and {é‘nl}:zo is a sequence of positive numbers such tiat

n- o

Enl > 0, then for any sequence of positive numb{hlﬁ}::o satisfying

Upy S AU, +€5, n=012,..., (1.12)

n+l —

we havelim u, =0.

no o

Lemma 1.6 [2].Let (X,d) be a complete metric space afid R* — R"a Lebesgue Stieltjes integrable mapping which
£

is summable, nonnegative and such that for eaeh0, J.¢(t)d V(t) > 0. Suppose tha{Un}::o, {Vn}::o 0 X and
0

{an}::o [0 (01 are sequences such that

d(Un,Vn)

ld(u,.v,) - [p@)dv(t) [k a,, (112)
0
with lim a, = 0. Then
d(u,.v,)
d(u,,v,)-a, < j p(t)dv(t) <d(u,,v.)+a,. (1.13)
0
Proof:

d(Uy. Vi)
By letting y =d(u,,V,) — '[¢(t)d V(t) and using the definition of modulus function|ily |, we have (1.13).
0

Remark 1.7 [2].Lemma 1.6 is also applicable in normed linear sgsiicce metric is induced by a norm. that is
d(x,y) =||x=y]||, O %, y O X,whenever we are working in a normed linear space.

Several authors have obtained different stabiéguits for various maps in literature. It has beeown that the recent
stability results of Olatinwo [2] generalizes aaxdends some other known results like that of Birifi], Osilike and
Udomene [3], Rhoades [4, 5] and Harder and HitRk$.[
The main aim of this paper is to establish theiktglof multistep iteration schemes (1.4) satisiyia general contractive
condition of integral type in a normed linear spdbereby generalizing and extending the resul@lafinwo [8], which is
in turn a generalization of other known stabiliggults in the literature.
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2 Main Results
Theorem 2.1.Let (E |||.||) be a normed space afd: E — Ea self mapping ofE satisfying
d(Tx,Ty)

d(x,Tx) d(x,y)
p(t)dv(t) sw( | ¢(t)dv(t)]+c [emdv), 2.1)

0

wherecJ [0) andV,y/ are monotonic increasing functions definedihy/ : R* — R" such thaty(0) =0, O

X, yOEand@: R* - R"is a Lebesgue-Stieltjes integrable mapping whicuremable, nonnegative and such that for

£
each € >0, '[¢(t)d V(t) > 0. SupposeTl has a fixed pointp. For X, O E, Let{X_}:_,be the multistep iteration
0

schemes defined by (1.4), wheig, }°_y, { B} _,are sequences in [0,1] such thét< B* < B.* (n= 012,...). Then
the multistep iteration schemes (1.4)lis— stable.

Proof:

00

Let{z,} 2, {u '}o for i =12,....k —1be real sequences i. Supposes, = ||z, —A-a,)z, —a, Tw ||,
n=012,... (2.2)

where
w,'=@-8z, + B, Tw,™, i=12,...k-2
Wnk—l — (1_:8nk_l)zn +,8nk_1TZn’ k> 2, (2.3)

and letlim &, = 0, then we shall show thdim z, = p.

n- oo n- o

Let {@,} - [ (01, then by Lemma (1.6), we have
l1z1~ Pl

[#®dv(®) <llz,. - pll+a,

0
<z, - A-a,)z, —a,Tw," ||-a,) + L-a,)(lz, - pll-&,)
+a,(|ITp-Tw,' || -a,) +3a, (2.4)

[1z,=pl| [Ip=Tpll

< [padv)+ a-a,) [ #OAVO +¢( [)dv)

1
llp-wy7ll

+C j d(t)dv(t) +3a.,. (2.5)
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Iw," = plk @- Bz, - plI+B, ITw,* - pl|
<@1-@1-0B,'-@A-0cB, B’ - A-c)c*B, BB’
—m Q=0 2B BB B Dz, - pll

<@-@-0B llz,-pll (2.6)

Substituting (2.6) in (2.5), we obtain

l1zn+1= Pl [1zo—pll

[ pdvv) < [p0dv + a-a,) [e0)dv()

0

[1zo - pll

+ea, - 1-0)B,") [p)dv(t) +3a,. 27)

l1zn1=pIl liz, - pll &
| #0dv(t) < @-@-0)a, - A-0)ca,B) [ sOdv(t)+ [pt)dv(t) +3a,. 28

0

Since0<a <a,and0< B < B 'for n>1, we have

llz.—pll lIz.—pll

j #(t)dv(t) < @- L-c)a - (L-c)caB) j P(t)dv(t) + j"¢(t)du(t)+3an. (2.9)

Using Lemma 1.5, where

0<d=1-(1-c)a-(@-c)capB' <1, (2.10)
[z, = pll
u, = j d(t)dv(t) 2.11)
0
and &= [dv()+3a,, (2.12)
0
win lime,! =lim ([ pE)dv(n) +3a,) =0. (2.13)
— 00 n— o 0

&
and the fact tha V() >0, for each& > Lemma 1.6, we have
d the f hj'¢(t)d (t) > 0, for eache >0 by h
0

l|zo—pll
lim j é(t)dv(t) = 0. This implies thadim || z, — p|[£ O. Thatislim z, = p.
n-oo n-oo n- oo
0
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Conversely, lelim z, = p, by the contractive condition in Theorem 2.1, Lentirtaand triangular inequality, we have

n- o

||Zn+1_p+p_(l_an)zn _anTWnlll ||Zn+1_ p“ ”p_(l_an)zn_anTWnlll

Jodv = [edviys [ gdvi)+  [emdv()

0

lIzn+1~ Pl lIz.—pll

< | ¢Wdv(t)+@-@-a,-(L-c)ca,B,) [#t)dv(t)+3a,

o

lIzn+1 =PIl [1zo—pll

< j (t)dv(t) + (1- L-C)a - - c)caBY) j¢(t)du(t)+3an. (2.14)

l1Z+1.~ pII
Since by assumptiodim z, = p implies Iimo J.¢(t)d V(t) =0 and that
n-oo n-oo
0

1-A-c)a - (L—c)capB* <1, it follows that
j¢(t)dl/(t) =0 implies lim &, = 0. This completes the proof.
° — 00

Theorem 2.1 leads to the following Corollaries:
Corollary 2.2. Let (E |||.||)be a normed space add: E — E a self mapping ofE satisfying

d(Tx,Ty) d(x,Tx) d(x,y)
g()dv(t) < (/l( I¢(t)dv(t)] +C j¢(t)dv(t), wherec [ [0) andV,{/ are monotonic increasing

0
functions defined by, : R* — R" suchthagy(0) =0, 0 x,yOEand¢:R" - R"is a Lebesgue-Stieltjes

£
integrable mapping which is summable, nonnegatidesaich that for eactg > 0, '[¢(t)d V(t) > 0. SupposeTl has a
0

fixed point p. For X, L1 E, Let{X,} -, be the Noor iteration schemes defined by (1.3)ree } o, { 5.} ey and

{V.} =0, are sequences in [0,1] such that &hd @ < a,, (N = 01,2,...). Then the Noor iteration scheme (1.3)lis-
stable.

Corollary 2.3. Let (E ||.||])be a normed space afd: E — E a self mapping ofE satisfying
d(Tx,Ty)

d(x,Tx) d(x,y)
g()dv(t) < (/l( I¢(t)dv(t)] +C j¢(t)dv(t), wherec [ [01) andV,{/ are monotonic increasing

0
functions defined by, : R* - R" such thagy(0) =0, 0 x,y[OEand¢:R" - R"is a Lebesgue-Stieltjes
£
integrable mapping which is summable, nonnegatiesaich that for eacte > 0, J.¢(t)d V(t) > 0. Supposerl has a
0
fixed point p. For X, LJE, Let{X } -, be the Ishikawa iteration scheme defined by (WRgre{a, } o, { B,} oo are
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sequences in [0,1] such that sk a < a,, (N = 01,2,...). Then the Ishikawa iteration scheme (1.2 is- stable.

Corollary 2.4. Let (E |||.||)be a normed space add: E — E a self mapping ofE satisfying

d(Tx,Ty) d(x,Tx) d(x,y)
j ' g)dv(t) < (/l( I¢(t)dv(t)] +C j;(t)dv(t), wherec ] [01) andV,{/ are monotonic increasing

0
functions defined by, : R* - R" such thagy(0) =0, 0 x,y[OEand¢:R" - R"is a Lebesgue-Stieltjes

&
integrable mapping which is summable, nonnegatiesaich that for eacte > 0, J.¢(t)d V(t) > 0. Supposerl has a
0

fixed point p. For X, U E, Let{X,} -, be the Mann iteration schemes defined by (1.1)re@, } -, is sequence in
[0,1] suchthatand < a < a, (n= 012,...). Then the Mann iteration scheme (1.1)is- stable.

Corollary 2.5. Let (E ||.||])be a normed space add: E — E a self mapping ofE satisfying

d(Tx,Ty) d(x,Tx) d(x,y)
I gt)du(t) < l//[ I¢(t)dl/(t)} +C I¢(t)dl/(t), wherec ] [01) andV,{/ are monotonic increasing
0 0 0
functions defined by, : R* - R" such thagy(0) =0, 0 x,y[OEand¢:R" - R"is a Lebesgue-Stieltjes
£
integrable mapping which is summable, nonnegatiesaich that for eacte > 0, J.¢(t)d V(t) > 0. Supposerl has a
0

fixed point p. For X, LJE, Let{X,} -, be the Picard iteration scheme defined by (1.5¢nTthe Picard iteration scheme
(1.5)isT —stable.

Conclusion 2.6. Theorem 2.1 is a generalization and extension ebfém 3 of Berinde [1],Theorem 3.1 and Theoreno8.2
Olatinwo [2], Theorem 24 of Rhoades [4], Theorenf Rhoades [5] and Theorem 3 of Harder and Hit®$ in the sense
that it considered the multistep iteration schemlegh is more general than the Noor, Ishikawa, Mand Picard iteration
schemes considered by various other authors.
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