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Abstract 

 
 
In this paper, we prove some stability results for multistep iteration scheme by 

using maps satisfying contractive condition of integral type in a normed linear space. 
Our results are generalizations and extensions of some of the results of Berinde [1], 
Olatinwo [2], Osilike and Udomene [3], Rhoades [4, 5] and some other numerous results 
in the literature. 
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1.0 Introduction 
 

Let E  be a normed space and EET →:  a self map of .E  For ,0 Ex ∈ the Mann Iteration scheme [6] is the 

sequence { }∞
=0nnx given by 

,)1(1 nnnnn Txxx αα +−=+                                                                  (1.1)  

where { } ]1,0[0 ⊂∞
=nnα such that .

0

∞→∑
∞

=n
nα  

For ,0 Ex ∈ the sequence { }∞
=0nnx defined by  

               nnnnn Tyxx αα +−=+ )1(1  

 ,)1( nnnnn Txxy ββ +−=  0≥n                                                        (1.2) 

where { }∞
=0nnα  and { }∞

=0nnβ are appropriate sequences in [0,1] such that ∞→∑
∞

=0n
nα is called the Ishikawa iteration 

scheme [7]. 

For ,0 Ex ∈ the sequence { }∞
=0nnx defined by  

               nnnnn Tyxx αα +−=+ )1(1  

 nnnnn Tzxy ββ +−= )1(   

                            ,)1( nnnnn Txxz γγ +−=        0≥n                                                        (1.3) 

where { }∞
=0nnα , { }∞

=0nnβ and { }∞
=0nnγ are appropriate sequences in [0,1] such that ∞→∑

∞

=0n
nα is called the Noor iteration 

scheme [8]. 
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For ,0 Ex ∈ the sequence { }∞

=0nnx defined by  

               nnnnn Tyxx 1
1 )1( αα +−=+  

                               
1)1( ++−= i

n
i
nn

i
n

i
n Tyxy ββ  , 2,...,3,2,1 −= ki  

                     ,)1( 111
n

k
nn

k
n

k
n Txxy −−− +−= ββ        2≥k                                               (1.4) 

where { }∞
=0nnα , { }∞

=0n

i
nβ , 1,...,,2,1 −= ki are appropriate sequences in [0,1] such that ∞→∑

∞

=0n
nα is called a multistep 

iteration scheme [9]. 

Definition 1.1.  Let ),( dX be a complete metric space and XXT →: a selfmap of .X  Suppose that 

{ }pTXpF pT =∈= :  is the set of fixed points of .T  Let { } Xx nn ⊂∞
=0 be the sequence generated by an iteration 

scheme involving T which is defined by 

                     ),,(1 nn xTfx =+  ,...2,1,0=n                                                                    (1.5) 

where Xx ∈0 is the initial approximation and f is some function. Suppose { }∞
=0nnx converges to a fixed pointp of .T  Let

{ } Xy nn ⊂∞
=0 and set )),,(,( 1 nnn yTfyd +=ε ,...2,1,0=n . Then the iteration scheme (1.5) is T-stable if and only if 

∞→n
lim .pyn =  

If in (1.5), ,),( nn TxxTf = ,...2,1,0=n , then we have the Picard iteration scheme, while we obtain the Mann iteration 

scheme if  

                   ,)1(),( nnnnn TxxxTf αα +−= ,...2,1,0=n , ].1,0[∈nα                           (1.6) 

 
 

Finally, if      nnnnn TyxxTf 1)1(),( αα +−=  

                                                
1)1( ++−= i

n
i
nn

i
n

i
n Tyxy ββ  , 2,...,3,2,1 −= ki  

                                   ,)1( 111
n

k
nn

k
n

k
n Txxy −−− +−= ββ        2≥k ,                              (1.7) 

we obtain the multistep iteration process.  

Definition 1.2 [2]. Let ),( dX be a complete metric space and XXT →: a selfmap of ,X    there exists )1,0[∈a  and a 

monotone increasing function ++ → RR:ϕ with 0)0( =ϕ  such that 

                            )),,((),(),( TxxdyxadTyTxd ϕ+≤ ∀ Xyx ∈, .                              (1.8)      

Motivated by the contractive condition given by  Olatinwo [2], Branciari [10] and Rhoades [11] gave the following 
contractive definition: 

Definition 1.3 [2]. For a selfmapping XXT →: , there exists a real number  )1,0[∈c  and a monotone increasing 

functions ++ → RR:,ψν  such that 0)0( =ψ and∀ ,, Xyx ∈  we have 
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∫∫ ∫ +≤
),(

0

),(

0

),(

0

)()())()(()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ                                                  (1.9) 

where ++ → RR:ϕ is a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such that for each 

,0>ε ∫ >
ε

νϕ
0

.0)()( tdt                                                            (1.10) 

Remark 1.4.  If in (1.10), 1)( =tϕ and ,)( tt =ν we have condition (1.8).  

Lemma 1.5 [1]. If δ  is a real number such that ,10 <≤ δ  and { }∞

=0

1

nnε is a sequence of positive numbers such that 
∞→n

lim

,01 >nε then for any sequence of positive numbers { }∞
=0nnu satisfying 

                     ,11 nnn uu εδ +≤+ ,...,2,1,0=n                                                                (1.11) 

we have 
∞→n

lim .0=nu  

Lemma 1.6 [2]. Let ),( dX be a complete metric space and ++ → RR:ϕ a Lebesgue Stieltjes integrable mapping which 

is summable, nonnegative and such that for each ,0>ε ∫ >
ε

νϕ
0

.0)()( tdt  Suppose that { }∞
= ,0nnu { } Xv nn ⊂∞

=0 and 

{ } )1,0(0 ⊂∞
=nna  are sequences such that  

∫ ≤−
),(

0

,|)()(),(|
nn vud

nnn atdtvud νϕ                                                                              (1.12) 

with 
∞→n

lim .0=na  Then 

.),()()(),(
),(

0

n

vud

nnnnn avudtdtavud
nn

∫ +≤≤− νϕ                                                       (1.13) 

Proof: 

By letting ∫−=
),(

0

)()(),(
nn vud

nn tdtvudy νϕ  and using the definition of modulus function in || y , we have (1.13). 

Remark 1.7 [2]. Lemma 1.6 is also applicable in normed linear space since metric is induced by a norm. that is  

=),( yxd ||,|| yx − ∀ ,, Xyx ∈ whenever we are working in a normed linear space. 

Several authors have obtained different stability results for various maps in literature. It has been shown that the recent 
stability results of  Olatinwo [2] generalizes and extends some other known results like that of Berinde [1], Osilike and 
Udomene [3], Rhoades [4, 5] and  Harder and Hicks [12]. 
The main aim of this paper is to establish the stability of multistep iteration schemes (1.4) satisfying a general contractive 
condition of integral type in a normed linear space, thereby generalizing and extending the results of Olatinwo [8], which is 
in turn a generalization of other known stability results in the literature.   
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2       Main Results 

Theorem 2.1. Let ||).||,(E be a normed space and EET →: a self mapping of E satisfying 

∫∫ ∫ +












≤

),(

0

),(

0

),(

0

),()()()()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ                                                   (2.1) 

where )1,0[∈c  and ψν ,  are monotonic  increasing functions defined by ++ → RR:,ψν  such that 0)0( =ψ , ∀  

Eyx ∈, and ++ → RR:ϕ is a Lebesgue-Stieltjes integrable mapping which is summable, nonnegative and such that for 

each  ,0>ε  ∫ >
ε

νϕ
0

.0)()( tdt  Suppose T has a fixed point .p  For ,0 Ex ∈  Let ∞
=0}{ nnx be the multistep iteration 

schemes defined by (1.4), where ,}{ 0
∞

=nnα i
nn 0}{ =β are sequences in [0,1] such that  

110 nββ <<  ,...).2,1,0( =n  Then 

the multistep iteration schemes (1.4) is −T stable. 

Proof: 

Let ,}{ 0
∞

=nnz ∞
=0}{ n

i
nu for 1,...,2,1 −= ki be real sequences in .E  Suppose =nε ||,)1(|| 1

1 nnnnn Twzz αα −−−+

,...2,1,0=n                                                                       (2.2) 

where    

,)1( 11 ++−= i
n

i
nn

i
nn Twzw ββ   2,...,2,1 −= ki  

      ,)1( 111
n

k
nn

k
n

k
n Tzzw −−− +−= ββ  ,2≥k                                                                  (2.3) 

and let ,0lim =
∞→ n

n
ε then we shall show that .lim pzn

n
=

∞→
 

Let  ),1,0(}{ 0 ⊂∞
=nna then by Lemma (1.6), we have 

  
∫

−

+

+

+−≤
||||

0

1

1

||||)()(
pz

nn

n

apztdt νϕ                                               

                      )||)(||1()||)1((|| 1
1 nnnnnnnnn apzaTwzz −−−+−−−−≤ + ααα  

                      nnnn aaTwTp 3)||(|| 1 +−−+ α                                                                 (2.4) 

                      ∫ ∫ ∫
− =

+−+≤
n n pz Tpp

n tdttdttdt
ε

νϕψνϕανϕ
0

||||

0

||||

0

))()(()()()1()()(  

                        ∫
−

++
||||

0

1

.3)()(
nwp

natdtc νϕ                                                                        (2.5)  

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 5 – 12      



9 

 

Stability Results for Multistep Iteration Satisfying...      Akewe and Okeke    J of NAMP 
 

      ||||||||)1(|||| 2111 pTwpzpw nnnnn −+−−≤− ββ  

                        
3212211 )1()1()1(1( nnnnnn

ccccc ββββββ −−−−−−≤  

                         ||||)...)1(... 13212 pzcc n
k

nnnn
k −−−− −− ββββ  

                          .||||)1(1( 1 pzc nn −−−≤ β                                                                    (2.6)    

Substituting (2.6) in (2.5), we obtain 

∫ ∫ ∫
− −+

−+≤
||||

0 0

||||

0

1

)()()1()()()()(
pz pz

n

n n n

tdttdttdt
ε

νϕανϕνϕ    

                            ∫
−

+−−+
||||

0

1 .3)()())1(1(
pz

nnn

n

atdtcc νϕβα                                            (2.7) 

∫ ∫ ∫
− −+

++−−−−≤
||||

0

||||

0 0

1
1

.3)()()()())1()1(1()()(
pz pz

nnnn

n n n

atdttdtccctdt
ε

νϕνϕβαανϕ    (2.8) 

Since nαα <<0 and 
110 nββ << for ,1≥n  we have 

.3)()()()())1()1(1()()(
||||

0

||||

0 0

1
∫ ∫ ∫
− −

++−−−−≤
pz pz

n

n n n

atdttdtccctdt
ε

νϕνϕαβανϕ          (2.9) 

Using Lemma 1.5, where 

                     ,1)1()1(10 1 <−−−−=≤ αβαδ ccc                                                       (2.10) 

                    ∫
−

=
||||

0

)()(
pz

n

n

tdtu νϕ                                                                                      (2.11) 

and              ,3)()(
0

1

∫ +=
n

nn atdt
ε

νϕε                                                                             (2.12) 

with       ∫ =+=
∞→∞→

n

n
n

n
n

atdt
ε

νϕε
0

1 .0)3)()((limlim                                                               (2.13) 

and the fact that ∫ >
ε

νϕ
0

,0)()( tdt  for each 0>ε  by Lemma 1.6, we have 

∫
−

∞→
=

||||

0

.0)()(lim
pz

n

n

tdt νϕ  This implies that .0||||lim =−
∞→

pzn
n

 That is .lim pzn
n

=
∞→  
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Conversely, let ,lim pzn
n

=
∞→

 by the contractive condition in Theorem 2.1, Lemma 1.6 and triangular inequality, we have 

       ∫ ∫∫ ∫
− −−−−−−+− ++

+≤=
||||

0

||)1(||

00

||)1(||

0

1
11

1

)()()()()()()()(
pz TwzpTwzppz n nnnnn nnnnn

tdttdttdttdt
ααε αα

νϕνϕνϕνϕ  

                          ∫ ∫
− −+

+−−−−+≤
||||

0

||||

0

1
1

3)()())1()1(1()()(
pz pz

nnnn

n n

atdtccctdt νϕβαανϕ  

                          ∫ ∫
− −+

+−−−−+≤
||||

0

||||

0

1
1

.3)()())1()1(1()()(
pz pz

n

n n

atdtccctdt νϕαβανϕ      (2.14) 

Since by assumption, pzn
n

=
∞→

lim implies ∫
−

∞→

+

=
||||

0
0

1

0)()(lim
pz

n

n

tdt νϕ  and that 

                           ,1)1()1(1 1 <−−−− αβα ccc  it follows that 

∫ =
ε

νϕ
0

0)()( tdt  implies .0lim =
∞→ n

n
ε  This completes the proof. 

Theorem 2.1 leads to the following Corollaries: 

Corollary 2.2. Let ||).||,(E be a normed space and EET →: a self mapping of E satisfying 

∫∫ ∫ +












≤

),(

0

),(

0

),(

0

),()()()()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ  where )1,0[∈c  and ψν ,  are monotonic  increasing 

functions defined by ++ → RR:,ψν  such that 0)0( =ψ , ∀  Eyx ∈, and ++ → RR:ϕ is a Lebesgue-Stieltjes 

integrable mapping which is summable, nonnegative and such that for each  ,0>ε  ∫ >
ε

νϕ
0

.0)()( tdt  Suppose T has a 

fixed point .p  For ,0 Ex ∈  Let ∞
=0}{ nnx be the Noor iteration schemes defined by (1.3), where ,}{ 0

∞
=nnα ∞

=0}{ nnβ
  
and

,}{ 0
∞

=nnγ  are sequences in [0,1] such that and nαα <<0  ,...).2,1,0( =n  Then the Noor iteration scheme (1.3) is −T
stable. 

Corollary 2.3. Let ||).||,(E be a normed space and EET →: a self mapping of E satisfying 

∫∫ ∫ +












≤

),(

0

),(

0

),(

0

),()()()()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ  where )1,0[∈c  and ψν ,  are monotonic  increasing 

functions defined by ++ → RR:,ψν  such that 0)0( =ψ , ∀  Eyx ∈, and ++ → RR:ϕ is a Lebesgue-Stieltjes 

integrable mapping which is summable, nonnegative and such that for each  ,0>ε  ∫ >
ε

νϕ
0

.0)()( tdt  Suppose T has a 

fixed point .p  For ,0 Ex ∈  Let ∞
=0}{ nnx be the Ishikawa iteration scheme defined by (1.2), where ,}{ 0

∞
=nnα ∞

=0}{ nnβ
  
are  
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sequences in [0,1] such that and nαα <<0  ,...).2,1,0( =n  Then the Ishikawa  iteration scheme (1.2) is −T stable. 

Corollary 2.4. Let ||).||,(E be a normed space and EET →: a self mapping of E satisfying 

∫∫ ∫ +












≤

),(

0

),(

0

),(

0

),()()()()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ  where )1,0[∈c  and ψν ,  are monotonic  increasing 

functions defined by ++ → RR:,ψν  such that 0)0( =ψ , ∀  Eyx ∈, and ++ → RR:ϕ is a Lebesgue-Stieltjes 

integrable mapping which is summable, nonnegative and such that for each  ,0>ε  ∫ >
ε

νϕ
0

.0)()( tdt  Suppose T has a 

fixed point .p  For ,0 Ex ∈  Let ∞
=0}{ nnx be the Mann iteration schemes defined by (1.1), where ∞

=0}{ nnα
 
 is sequence in 

[0,1] such that and nαα <<0  ,...).2,1,0( =n  Then the Mann iteration scheme (1.1) is −T stable. 

Corollary 2.5. Let ||).||,(E be a normed space and EET →: a self mapping of E satisfying 

∫∫ ∫ +












≤

),(

0

),(

0

),(

0

),()()()()()(
yxdTyTxd Txxd

tdtctdttdt νϕνϕψνϕ  where )1,0[∈c  and ψν ,  are monotonic  increasing 

functions defined by ++ → RR:,ψν  such that 0)0( =ψ , ∀  Eyx ∈, and ++ → RR:ϕ is a Lebesgue-Stieltjes 

integrable mapping which is summable, nonnegative and such that for each  ,0>ε  ∫ >
ε

νϕ
0

.0)()( tdt  Suppose T has a 

fixed point .p  For ,0 Ex ∈  Let ∞
=0}{ nnx be the Picard iteration scheme defined by (1.5). Then the Picard iteration scheme 

(1.5) is −T stable. 

Conclusion 2.6. Theorem 2.1 is a generalization and extension of Theorem 3 of Berinde [1],Theorem 3.1 and Theorem 3.2 of 
Olatinwo [2], Theorem 24 of Rhoades [4], Theorem 2 of Rhoades [5] and  Theorem 3 of Harder and Hicks [12] in the sense 
that it considered the multistep iteration schemes which is more general than the Noor, Ishikawa, Mann and Picard iteration 
schemes considered by various other authors. 
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