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Abstract 
 

 
From a real-valued function �, unbounded on a totally bounded subset � of a 

metric space, we construct a Cauchy sequence in � on which � is unbounded. Taking � 
to be a  reciprocal Lebesgue number function, for an open cover of �, gives a rapid 
proof that � is compact when it is complete, without recourse to sequential compactness 
or the Lebesgue covering lemma. Finally, we apply the same reasoning to another 
function � to give sequential compactness.  
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1.0 Introduction 

 
An examination of both well established accounts of compactness in metric spaces, for example [1] and [2], and 

more recent work in this area [3], led the author to explore whether the simplicity and full power of the Lebesgue number of 
an open cover was being fully exploited when showing that a totally bounded complete space is compact. 

Classically, the Lebesgue number is defined for the open cover�and its existence is deduced with the Lebesgue 
Covering Lemma. This leads to somewhat complicated subsequence arguments in conjunction with variously selected open 
balls, see [3] and [2]. 

Our approach is to define a  reciprocal Lesbesgue number function �� at each point being covered, so that that 
establishing the existence of the Lebesgue number reduces to deciding whether this function is bounded. A simple 
construction shows that any unbounded function on a subset of a totally bounded space is unbounded on a Cauchy sequence. 
This combines with special properties of �� to avoid use of sequential compactness altogether in showing that a totally 
bounded complete subset of a metric space is compact. Replacing �� by another function �� for � � 	, allows entirely 
similar reasoning for sequential compactness. 

Examples of recent work using total boundedness in the context of abstract uniform spaces are, particularly for 
topological groups, [4] and even rings [5]. We have explored how the concepts and results of this paper generalise to uniform 
spaces, but the obvious generalisation requires the existence of a countable fundamental system of entourages for the 
uniformity. But then it is well known [6] that the uniformity is induced by a pseudometric, so the work is presented for a 
pseudometric space 
 with pseudometric �, for which the defining conditions are, for all �, �, � � 
:  

  
 ���, �� � 0 and���, �� � 0;                  (non-negative, semi-definite) 
 ���, �� � ���, ��;                            (symmetric)  
 ���, �� � ���, �� � ���, ��.                   (triangle inequality)  

 For each � � 
 and � � 0, the open balls with centre � and radius � and �/2 are denoted  
 
 "��, �� � #� � 
  |  ���, �� % �&and"'��, �� � #� � 
  |  ���, �� % �/2&. 

Note two simple consequences of the triangle inequality,   
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 � � "'��, �� implies"'��, �� � "��, ��, (1) 
 and   

 �, � � "'��, ��implies� � "��, ��. (2) 
 
2.0           Totally Bounded Subsets 

 Most authors work only with totally bounded spaces. When applying the concept to a subset 	 of space 
, there is a 
choice as to whether to use open balls whose centres are in 	 or in 
. We make the first choice:  

 
2.1 Definition A subset 	 of 
 is called totally bounded in 
 if given . � 0 there is a finite cover of 	 by open balls 

"��, .� with centres in � � 	.  
 But, with this definition, it takes several steps to show that a non-empty subset � of a totally bounded subset 	 in 
 

is again totally bounded in 
. Indeed, given . � 0, take a finite open cover #"'�/0, .�, … , "'�/2 , .�& of 	 with centres in 	: 
for each 3 with 1 � 3 � 5, take some 67 � � 8 "'�/7 , .� when this set is non-empty, and take 67 to be any point of � 
otherwise. Then, using implication (1),#"�60, .�, … , "�62, .�& is an open cover of � by open balls with centres in �.  

 
3.0  The Construction 
 
3.1 TheoremLet 	9 be a totally bounded subset of a metric space 
, and suppose that :: 	9 < = is not bounded 

above. Then there is a Cauchy sequence >0, >', … of points of 	9 such that :�>2� � 5 for all 5 � ?. 
 
Proof. We recursively define a sequence >0, >', … of points of 	9 and a descending chain 	9 @ 	0 @ A of subsets of 


 so that, for each 5 � B, 
 

:isunboundedaboveon	2 � " G>2 , 0
2H 8 	2I0 and :�>2� � 5. (3) 

 
 Now suppose for a non-negative integer 5 that a subset of 	2 of 	9 has been defined such that, if 5 � 0, condition (3) is 
satisfied, whilst if 5 � 0, 	2 is simply 	9. Because 	2 � 	9, it is totally bounded, and there is a finite open cover #"'��0, 1/
�5 � 1��, … , "'��J, 1/�5 � 1��& of 	2 . Since : is unbounded on 	2, it is also unbounded on the points of 	2 lying within at 
least one of these balls "'�K2L0, 1/�5 � 1��, say. Thus there is a point >2L0 � 	2 8 "'�K2L0, 1/�5 � 1�� for which 
:�>2L0� � 5 � 1, and by implication (1), since "'�K2L0, 1/�5 � 1�� � "�>2L0, 1/�5 � 1��, taking 	2L0 � 	2 8
"�>2L0, 1/�5 � 1�� satisfies condition (3) with 5 � 1 in place of 5, and the recursion can continue indefinitely. 

Now for any M, 5 � 2N, we have >J, >2 � 	'O � "'�>'O , 1/N�, so that, by implication (1),  
 >J � "�>2 , 1/N� 
 

and thus >0, >', … is a Cauchy sequence with the required property.  
 
3.2 Corollary Let :: 	 < = be a function locally bounded above on a complete totally bounded subset 	 of 
. Then 

: is bounded above on 	.    
 
Proof. If : is not bounded above, by the theorem, there is a Cauchy sequence >0, >', … of 	, with :�>2� � 5 for 

each 5 � B. Because 	 is complete, this sequence converges to some > � 	, and because : is locally bounded at >, there is 
some � � 0 and some � � Psuch that  

 
 :��� � � forall� � "�>, �� 8 	. 
 

But since, for all 5 � �, we have :�>2� � � and thus >2 S "�>, ��, this gives contradiction. Thus : is bounded on 	 as 
required.  
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4.0  Application to Open Covers and Compactness 
 
4.1 DefinitionLet�be a collection of open subsets of a metric space 
, and let T � U  V�� W. For any � � T, we have 

� � W for some W � �, and thus, for suitable large 5 � ? we have "��, 1/5� � W, because W is open. Thus the reciprocal 
Lebesgue number function��: T < ? given by  

 ����� � inf#5 � ?| " G�, 0
2H � W :X� /XMY W � �& 

is well defined.   
 
 A crucial property of this function is its local boundedness as follows.  
 
4.2 Proposition In the notation of 4.1, for any � � T, taking Z � 1/�����, we see that the function �� is defined on 

"'��, Z� and   
 � � "'��, Z� 3M[\3Y/ ����� � 2�����. (4) 
Proof. Taking 5 � �V���, there is some W � � such that "��, 1/5� � W. However, by implication (1), for � �

"'��, 1/5�, we have  
 "'��, 1/5� � "��, 1/5� � W 

and thus ����� � 25. Putting 5 � ����� gives property (4). 
 Equally important is the following classical result. 
 
4.3 Lemma  If�is an open cover of a totally bounded subset	of a metric space
and �� is bounded on 	, then there 

is finite subcover of�for	.  
 
Proof. Suppose ����� � N � B for all � � 	 and let "��0, 1/N�, … , "��2 , 1/N� be an open cover for 	 with centres 

in 	. Since, for each 3 there is W7 � � with "��7 , 1/N� � W7, the collection #W0, … , W2& is an open cover for 	.  
 
4.4 Theorem Any complete totally bounded subset of a pseudometric space 
 is compact.  
 
Proof. Take an open cover�of a complete totally bounded subset 	 of 
. Because �� is locally bounded on 	, 

corollary 3.2 shows that it is bounded on 	, and hence lemma 4.3      shows that there is a finite subcover of�for 	.  
 
5.0  Application to Infinite Subsets and Sequential Compactness 
 Suppose � � 	 � 
 and that � has no limit point in 	. Then fixing � � 	, there is 5 � Bsuch that "��, 1/5� 8 � is 

finite and we can define  

 ����� � inf #5 � B|" G�, 0
2H 8 �isfinite&. 

Using implication (1) we have  

 � � "' G�, 0
_`�a�H implies"'��, 1/������ � "��, 1/������ 

and thus ����� � 2����� for � � "'��, 1/������, so that �� is locally bounded on 	.  

5.1 Theorem Let � be a subset of a complete totally bounded subset 	 of a pseudometric space 
. If � has no limit 
point in 	, then � is finite.  

Proof. Using corollary 3.2, we see that ����� % N for all � � 	, for some suitable N � B. But 	 has a finite cover 
#"��0, 1/N�, … , "��2 , 1/N�& for some points �0, … , �2 of 	. Since each ����7� % N, the sets "��7 , 1/N� 8 � are finite for 
1 � 3 � M, and thus � is finite.  

 An immediate consequence of this theorem is sequential compactness of 	, see for example [2].  
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