A Note on Using Unbounded Functions on Totally Bounded Sets
 in the Context of the Lebesgue Covering Lemma

C. K. Wright
Department of Mathematics and Computer Science, Delta State University, Abraka, Delta State, Nigera.

Abstract

From a real-valued function f, unbounded on a totally bounded subset S of a metric space, we construct a Cauchy sequence in S on which f is unbounded. Taking f to be a reciprocal Lebesgue number function, for an open cover of S, gives a rapid proof that S is compact when it is complete, without recourse to sequential compactness or the Lebesgue covering lemma. Finally, we apply the same reasoning to another function f to give sequential compactness.

Keywords: Pseudometric space, Cauchy sequence, total boundedness, Lebesgue number, Lebesgue covering lemma.

1.0 Introduction

An examination of both well established accounts of compactness in metric spaces, for example [1] and [2], and more recent work in this area [3], led the author to explore whether the simplicity and full power of the Lebesgue number of an open cover was being fully exploited when showing that a totally bounded complete space is compact.

Classically, the Lebesgue number is defined for the open cover \mathcal{C} and its existence is deduced with the Lebesgue Covering Lemma. This leads to somewhat complicated subsequence arguments in conjunction with variously selected open balls, see [3] and [2].

Our approach is to define a reciprocal Lesbesgue number function $L_{\mathcal{C}}$ at each point being covered, so that that establishing the existence of the Lebesgue number reduces to deciding whether this function is bounded. A simple construction shows that any unbounded function on a subset of a totally bounded space is unbounded on a Cauchy sequence. This combines with special properties of $L_{\mathcal{C}}$ to avoid use of sequential compactness altogether in showing that a totally bounded complete subset of a metric space is compact. Replacing $L_{\mathcal{C}}$ by another function M_{T} for $T \subset S$, allows entirely similar reasoning for sequential compactness.

Examples of recent work using total boundedness in the context of abstract uniform spaces are, particularly for topological groups, [4] and even rings [5]. We have explored how the concepts and results of this paper generalise to uniform spaces, but the obvious generalisation requires the existence of a countable fundamental system of entourages for the uniformity. But then it is well known [6] that the uniformity is induced by a pseudometric, so the work is presented for a pseudometric space X with pseudometric d, for which the defining conditions are, for all $x, y, z \in X$:

$$
\begin{array}{lc}
d(x, y) \geq 0 \text { and } d(x, x)=0 ; & \text { (non-negative, semi-definite) } \\
d(x, y)=d(y, x) ; & \text { (symmetric) } \\
d(x, z) \leq d(x, y)+d(y, z) . & \text { (triangle inequality) }
\end{array}
$$

For each $x \in X$ and $r>0$, the open balls with centre x and radius r and $r / 2$ are denoted

$$
B(x, r)=\{y \in X \mid d(x, y)<r\} \operatorname{and} B_{2}(x, r)=\{y \in X \mid d(x, y)<r / 2\}
$$

Note two simple consequences of the triangle inequality,

Corresponding author, E-mail: ckwright@allmail.net, Tel. +2348055060473

$$
\begin{equation*}
y \in B_{2}(x, r) \operatorname{implies} B_{2}(y, r) \subset B(x, r), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y, z \in B_{2}(x, r) \text { implies } y \in B(z, r) . \tag{2}
\end{equation*}
$$

2.0 Totally Bounded Subsets

Most authors work only with totally bounded spaces. When applying the concept to a subset S of space X, there is a choice as to whether to use open balls whose centres are in S or in X. We make the first choice:
2.1 Definition A subset S of X is called totally bounded in X if given $\varepsilon>0$ there is a finite cover of S by open balls $B(x, \varepsilon)$ with centres in $x \in S$.

But, with this definition, it takes several steps to show that a non-empty subset T of a totally bounded subset S in X is again totally bounded in X. Indeed, given $\varepsilon>0$, take a finite open cover $\left\{B_{2}\left(s_{1}, \varepsilon\right), \ldots, B_{2}\left(s_{n}, \varepsilon\right)\right\}$ of S with centres in S : for each i with $1 \leq i \leq n$, take some $t_{i} \in T \cap B_{2}\left(s_{i}, \varepsilon\right)$ when this set is non-empty, and take t_{i} to be any point of T otherwise. Then, using implication $(1),\left\{B\left(t_{1}, \varepsilon\right), \ldots, B\left(t_{n}, \varepsilon\right)\right\}$ is an open cover of T by open balls with centres in T.

3.0 The Construction

3.1 TheoremLet S_{0} be a totally bounded subset of a metric space X, and suppose that $f: S_{0} \rightarrow \boldsymbol{R}$ is not bounded above. Then there is a Cauchy sequence a_{1}, a_{2}, \ldots of points of S_{0} such that $f\left(a_{n}\right)>n$ for all $n \in \boldsymbol{N}$.

Proof. We recursively define a sequence a_{1}, a_{2}, \ldots of points of S_{0} and a descending chain $S_{0} \supset S_{1} \supset \cdots$ of subsets of X so that, for each $n \in \mathbf{N}$,

$$
\begin{equation*}
f \text { isunboundedaboveon } S_{n}=B\left(a_{n}, \frac{1}{n}\right) \cap S_{n-1} \text { and } f\left(a_{n}\right)>n . \tag{3}
\end{equation*}
$$

Now suppose for a non-negative integer n that a subset of S_{n} of S_{0} has been defined such that, if $n>0$, condition (3) is satisfied, whilst if $n=0, S_{n}$ is simply S_{0}. Because $S_{n} \subset S_{0}$, it is totally bounded, and there is a finite open cover $\left\{B_{2}\left(x_{1}, 1 /\right.\right.$ $\left.(n+1)), \ldots, B_{2}\left(x_{m}, 1 /(n+1)\right)\right\}$ of S_{n}. Since f is unbounded on S_{n}, it is also unbounded on the points of S_{n} lying within at least one of these balls $B_{2}\left(b_{n+1}, 1 /(n+1)\right)$, say. Thus there is a point $a_{n+1} \in S_{n} \cap B_{2}\left(b_{n+1}, 1 /(n+1)\right)$ for which $f\left(a_{n+1}\right)>n+1$, and by implication (1), since $B_{2}\left(b_{n+1}, 1 /(n+1)\right) \subset B\left(a_{n+1}, 1 /(n+1)\right)$, taking $S_{n+1}=S_{n} \cap$ $B\left(a_{n+1}, 1 /(n+1)\right)$ satisfies condition (3) with $n+1$ in place of n, and the recursion can continue indefinitely.

Now for any $m, n>2 K$, we have $a_{m}, a_{n} \in S_{2 K} \subset B_{2}\left(a_{2 K}, 1 / K\right)$, so that, by implication (1), $a_{m} \in B\left(a_{n}, 1 / K\right)$
and thus a_{1}, a_{2}, \ldots is a Cauchy sequence with the required property.
3.2 Corollary Let $f: S \rightarrow \boldsymbol{R}$ be a function locally bounded above on a complete totally bounded subset S of X. Then f is bounded above on S.

Proof. If f is not bounded above, by the theorem, there is a Cauchy sequence a_{1}, a_{2}, \ldots of S, with $f\left(a_{n}\right)>n$ for each $n \in \mathbf{N}$. Because S is complete, this sequence converges to some $a \in S$, and because f is locally bounded at a, there is some $r>0$ and some $M \in \mathbf{R s u c h}$ that

$$
f(x) \leq M \text { forall } x \in B(a, r) \cap S
$$

But since, for all $n>M$, we have $f\left(a_{n}\right)>M$ and thus $a_{n} \notin B(a, r)$, this gives contradiction. Thus f is bounded on S as required.

4.0 Application to Open Covers and Compactness

4.1 DefinitionLetC be a collection of open subsets of a metric space X, and let $V=U_{U \in \mathcal{C}} U$. For any $x \in V$, we have $x \in U$ for some $U \in \mathcal{C}$, and thus, for suitable large $n \in N$ we have $B(x, 1 / n) \subset U$, because U is open. Thus the reciprocal Lebesgue number function $L_{\mathcal{C}}: V \rightarrow \boldsymbol{N}$ given by

$$
L_{\mathcal{C}}(x)=\inf \left\{n \in N \left\lvert\, B\left(x, \frac{1}{n}\right) \subset U\right. \text { for some } U \in \mathcal{C}\right\}
$$

is well defined.
A crucial property of this function is its local boundedness as follows.
4.2 Proposition In the notation of 4.1, for any $x \in V$, taking $\delta=1 / L_{\mathcal{C}}(x)$, we see that the function $L_{\mathcal{C}}$ is defined on $B_{2}(x, \delta)$ and

$$
\begin{equation*}
y \in B_{2}(x, \delta) \text { implies } L_{\mathcal{C}}(y) \leq 2 L_{\mathcal{C}}(x) \tag{4}
\end{equation*}
$$

Proof. Taking $n \geq L_{U}(x)$, there is some $U \in \mathcal{C}$ such that $B(x, 1 / n) \subset U$. However, by implication (1), for $y \in$ $B_{2}(x, 1 / n)$, we have

$$
B_{2}(y, 1 / n) \subset B(x, 1 / n) \subset U
$$

and thus $L_{\mathcal{C}}(y) \leq 2 n$. Putting $n=L_{\mathcal{C}}(x)$ gives property (4).
Equally important is the following classical result.
4.3 Lemma IfCis an open cover of a totally bounded subsetSof a metric spaceXand $L_{\mathcal{C}}$ is bounded on S, then there is finite subcover ofCforS.

Proof. Suppose $L_{\mathcal{C}}(x) \leq K \in \mathbf{N}$ for all $x \in S$ and let $B\left(x_{1}, 1 / K\right), \ldots, B\left(x_{n}, 1 / K\right)$ be an open cover for S with centres in S. Since, for each i there is $U_{i} \in \mathcal{C}$ with $B\left(x_{i}, 1 / K\right) \subset U_{i}$, the collection $\left\{U_{1}, \ldots, U_{n}\right\}$ is an open cover for S.
4.4 Theorem Any complete totally bounded subset of a pseudometric space X is compact.

Proof. Take an open coverCof a complete totally bounded subset S of X. Because $L_{\mathcal{C}}$ is locally bounded on S, corollary 3.2 shows that it is bounded on S, and hence lemma 4.3 shows that there is a finite subcover of \mathcal{C} for S.

5.0 Application to Infinite Subsets and Sequential Compactness

Suppose $T \subset S \subset X$ and that T has no limit point in S. Then fixing $x \in S$, there is $n \in$ Nsuch that $B(x, 1 / n) \cap T$ is finite and we can define

$$
M_{T}(x)=\inf \left\{n \in \mathbf{N} \left\lvert\, B\left(x, \frac{1}{n}\right) \cap\right. \text { Tisfinite }\right\}
$$

Using implication (1) we have

$$
y \in B_{2}\left(x, \frac{1}{M_{T}(x)}\right) \operatorname{implies} B_{2}\left(y, 1 / M_{T}(x)\right) \subset B\left(x, 1 / M_{T}(x)\right)
$$

and thus $M_{T}(y) \leq 2 M_{T}(x)$ for $y \in B_{2}\left(x, 1 / M_{T}(x)\right)$, so that M_{T} is locally bounded on S.
5.1 Theorem Let T be a subset of a complete totally bounded subset S of a pseudometric space X. If T has no limit point in S, then T is finite.

Proof. Using corollary 3.2, we see that $M_{T}(x)<K$ for all $x \in S$, for some suitable $K \in \mathbf{N}$. But S has a finite cover $\left\{B\left(x_{1}, 1 / K\right), \ldots, B\left(x_{n}, 1 / K\right)\right\}$ for some points x_{1}, \ldots, x_{n} of S. Since each $M_{T}\left(x_{i}\right)<K$, the sets $B\left(x_{i}, 1 / K\right) \cap T$ are finite for $1 \leq i \leq m$, and thus T is finite.

An immediate consequence of this theorem is sequential compactness of S, see for example [2].

References

[1] E. T. Copson, Metric Spaces, Cambridge Tracts in Mathematics No. 57, Cambridge University Press, Cambridge, UK, 1968.

Unbounded Functions on Totally Bounded Sets in the Context of...
[2] G. F. Simmons, Introduction to Topology and Modern Analysis, International Student Edition, McGraw-Hill KogaKusha, Tokyo, Japan, 1963.
[3] Charles Chapman Pugh, Real Mathematical Analysis, Undergraduate Texts in Mathematics, Springer, New York, USA, 2002.
[4] W. W. Comfort and Victor Saks, Countably Compact Groups and Finest Totally Bounded Topologies, Pacific Journal of Mathematics, Vol. 49, No. 1, 1973.
[5] L. Popa, A. Tripe, M. Ursul Totally Bounded Rings Proceedings of the Algebra Symposium Universitatea BabeEu-Bolyai, Cluj-Napoca, Roumania, 2002; pp. 223-233.
[6] Nicolas Bourbaki, General Topology, Springer-Verlag, Berlin, New York, 1989

