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Abstract 
 
The determination of binding energy per nucleon of infinite nuclear matter and its 

compression modulus has been a great challenge for nuclear physicists for many 
decades. In this work we have calculated   the binding energy and compression modulus 

k∞  of infinite nuclear matter from a density-dependent potential derived from a 

variational approach. The density-dependent potential reproduces the binding energy of 
nuclear matter of approximately -16 MeV at the normal nuclear matter saturation 
density consistent with the best available density-dependent potentials derived from the 

G-matrix approach. The results of the incompressibility modulus, k∞ is in excellent 

agreement with the results of other workers. 

 

1.0 Introduction 
The use of density-dependent effective interactions for inelastic scattering as well as ion-ion optical potentials has 

received a lot of attention for some time now [1, 2, 3]. The pioneering work in this direction has been the G-matrix 
calculations of Bertsch and co-workers [1]. An extension of this work [4] and the large number of papers based on such 
effective interactions has been phenomenon. 

In a recent paper [5] we derived a similarly motivated effective interaction which was based on the lowest order 
constrained variation approach [5, 6, 7]. The results of that paper compared very favourably with the results obtained from 
the G-matrix calculations. 

One of the stringent tests an effective interaction must pass among other tests is to reproduce the binding energy of 
nuclear matter of ≈ -16 MeV at the normal nuclear matter density of ≈ 0.17 fm-3 

The aim of this paper is to derive a density-dependent effective potential from the results of our work in Ref. [5] and then 

use it to calculate the binding energy and the compression modulus, k∞  of nuclear matter. 

The present paper is organized as follows: 
In Section 2, we give a brief summary of the method used in deriving our effective interaction. In Section 3, we derive 

our density-dependent effective interaction. In Section 4, we present the results of nuclear matter calculations with the present 
effective interaction. The final Section is devoted to the conclusion of the paper. 
 
2.   Effective potential matrix elements. 
The determination of the effective potential matrix elements of the nucleon-nucleon potential is not very easy as such 
potentials usually take on infinite values at very short inter-nucleon distances of < 0.3 fm. For this reason, the wave function  

must be correlated with a correlation function ( )f ij  such that as  ( )0, 0r f ij→ →  while the two-body potential 

ijV → ∞  as 0r →  and the matrix elements of the effective potential effE  given below become finite [5]: 

( ) ( )eff
ij

i j

E f ij V f ijϕ ϕ
>

= ∑                                                                    (1) 

In eqn. (1)  ϕ  is taken to be the harmonic oscillator wave function, while ijV  here is taken to be the Reid soft-core 

potential [8]. In Ref. [5] we defined an effective interaction which is suitable for calculations of inelastic scattering and ion-
ion optical potentials. This is taken to be the sum of Yukawa functions with different ranges to which the two-body matrix 
elements of eqn. (1) are fitted. Specifically this was defined for the central (c), spin-orbit (ls) and tensor (t) channels as 
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( ) ijij
p pij
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pt Sr
Rr

e
DV

pij

2∑
−

=  ,                                                                                                (2) 

where the pD ’s are the strengths of  the effective interaction which were determined by fitting the oscillator matrix elements 

of eqn. (2) to those of eqn. (1). The ranges 4≤p were  0.25, 0.4, 0.7 and 1.414 fm. These ranges were theoretically 

motivated by the one-boson exchanges. For example the longest range of 1.414 fm corresponds to the one pion exchanges 
while the shorter ranges correspond to heavier meson exchanges such as ρσ ,  and ω . 

 In Ref. [5] Table V, the strengths of our effective interaction were determined by fitting the oscillator matrix elements of 
eqn. (2) to those of eqn. (1) as described above. The results were separated into various angular momentum channels which 
were; the singlet–even (SE), singlet-odd (SO), triplet-even (TE), triplet-odd (TO), the spin-orbit and the tensor channels.  
Here, we are interested only in the first four channels mentioned above and we shall use the results of Table V of Ref. [5] for 
these channels.  
 

3. Density-Dependent Effective Interactions. 
In this Section we present the form of our density-dependent effective nucleon-nucleon potential suitable for the calculation 
of nuclear matter properties. Here the direct and exchange potentials in the SE, SO, TE, and the TO channels can be recast 
into the spin-isopin formalism as [9]: 

( )TOSOTESED VVVVV 933
16

1 +++= ,                                                                       (3) 

with  
τσ PPVV DEX = ,                                                                                                            (4) 

where   σP and τP  are projection operators in the spin and isospin channels. Hence, 

( )TOSOTESEEX VVVVV 933
16

1 −−+= .                                                                     (5) 

Using the various ranges as defined in Table V of Ref. [5], we obtain 
 

( )
r

e

r

e
rV

rr
D

5.2
2359

4
11012

5.24 −−
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and 

( )
r

e

r

e

r

e
rV

rrr
EX

7072.0
847.7

5.2
94.1503

4
25.1039

7072.05.24 −−−

−−= .                                  (7) 

These results may be compared with the very popular M3Y effective interaction derived from the G-matrix approach given 
by [10]: 

( )
r

e

r

e
rV

rr
D

5.2
85.2134

4
0.7999

5.24 −−

−= , 

( )
r

e

r

e

r

e
rV

rrr
EX

7072.0
847.7

5.2
13.1787

4
38.4631

7072.05.24 −−−

−−= . 

As is well-known in nuclear matter calculations, the presence of the direct and exchange terms alone cannot reproduce the 
binding energy of nuclear matter, except a density dependence is included. We included the density dependence in the form 
similar to that of Ref. [2] in the form:  

( ) ( ) ( )ρρ frVrV EXD )(, = ,                                                                                                (8) 

with  

( ) ( )αρρ −+= BeAf 1 ,                                                                                                       (9) 

where A, B and α  are constants. 
With this form of the density dependence, the binding energy of nuclear matter per nucleon can be written as [3]: 

( ) ( )[ ] ( ){ }∫++∈= rdrVrkjJ
f

m

k EX
FBV

F 32
22

210

3 ρρh ,                                                 (10) 

where 

( )∫= rdrVJ D
V

3 , 
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and 

( ) ( )
x

xj
xj B

13= , 

while     ( )xjk     is the   kth -order spherical Bessel function. 

The compression modulus, ∞k of the spin and isospin symmetric cold infinite nuclear matter (INM) is defined as  

0

2

2
2

2

2
2 9

ρρρ
ρ

=
∞ ∂

∈∂=
∂

∈∂=
F

F k
kk ,                                                (11) 

where the Fermi momentum Fk for the spin and isospin symmetric INM is given by  

ρπ 23 5.1=Fk .                                                                                    (12) 

Here ρ is the nucleonic density while 0ρ  is the saturation density for the spin and isospin symmetric INM. 

For the calculation of the compression modulus we have used as a first approximation the zero-range pseudo-potential, 

( ) ( )rJ δ∈00  instead of the full exchange potential. In this case we define [11]:     

( ) ( )∈+
∈

+∈= 00

22

2

,

10

3
J

Jf

m

k DF ρρh ,                                              (13)  

 where the zero-range pseudo-potential representing the single-nucleon exchange term is given by [12]: 
( ) ( ) 3

00 005.01276 fmMeVJ ∈−−=∈ .                                          (14) 

Here the density-dependent part has been taken to be [13] 
( ) ( )[ ]321, ρβρ ∈−=∈ Cf ,                                                                (15) 

which takes care of the higher order exchange  and the Pauli blocking effects, C and ( )∈β  are constants, ( )∈β  depends on 

the energy   where  m  is the nucleonic mass which is equal to 931.4943 Mev/c2 and DJ  represents the volume integral of 

the direct term supplemented by the zero-range pseudo-potential  having the form  
( ) ( )∫=∈ drrrVJ D

D
24π .                                                                  (16) 

The equilibrium density of nuclear matter is defined from the saturation condition  

0=
∂

∈∂
ρ

.                                                                                                 (17) 

The expressions for the parameters C  and ( )∈β  in eqn. (15) are respectively given by [11] 

( ) ( ) 32

59

33 ρβ 








−
−=∈

p

p ,                                                                  (18) 

where  

( )[ ]3222 5.1

10

ρπh

∈= m
p  , 

and  

( )( )[ ]3515

2
32

22
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v

F
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C

h  .                                                    (19) 

 Finally, the Compression modulus,∞k can be evaluated as [11]: 

( )
0

35
22

5
5

3

ρρ
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=

∞ 







∈−= JvC

m

k
k Fh .                                                  (20) 

4. Results. 
In Fig. 1, the graph of the calculated values of the binding energy per nucleon for infinite nuclear matter is plotted with the 
requirement that the nuclear matter binding energy be reproduced at the correct nuclear matter density. 
As can be seen from the graph, the binding energy per nucleon for infinite nuclear matter of -16 MeV was reproduced at the 
nuclear density of   17.0≈ fm-3. 

In Table 1, we have  presented the results of our calculations of ∞k  for different values of C and ( )∈β .  Since the values 

used for the saturation density 0ρ  by different groups do differ, a narrow range of its acceptable values ( 

150.0170.00 −=ρ  fm-3) have been used. The values obtained for the compression modulus ranges from 301 to 307 MeV 

for the acceptable range of values of saturation densities used here. 
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Theoretical estimate by INM model [11] claims a well defined and stable value of   ∞k =288 ±  20 MeV. The determination 

of ∞k  based on the production of hard photons in heavy-ion collisions leads to the experimental estimate, ∞k = 290 ±  50 

MeV [14]. The results of the present calculations are in excellent agreement with the results of these researchers.  

 

Fig. 1, the graph of the calculated values of the binding energy per nucleon for infinite nuclear matter against densities. 

 
Table 1. Compression Modulus at different saturation densities. The results of the present calculations for  ∞k are given. 

These should be compared with those in ref. [11] 

)( 3−
∞ fmρ  ( ) )( 2fm∈β  C [11] C present  ∞k (MeV) [11]    ∞k (MeV) present 

0.170  1.551  (1.98)    1.93  (309.6)      307.5  
0.165  1.586  (2.02)   1.96  (308.2)      305.5                   
0.160  1.624  (2.07)   2.01  (306.9)      304.7 
0.155  1.664  (2.11)   2.06  (305.5)      303.7 
0.150  1.705  (2.16)   2.10  (304.0)      301.4  

 
5. Conclusion. 
We have derived a density-dependent potential from variational method which reproduces the binding energy per nucleon of 
infinite nuclear matter at the correct nuclear matter density of 0.17 fm-3. We have next calculated the compression modulus of 

the spin and isospin symmetric cold INM using the potential. The resulting values of ∞k are found to lie between the range 

301 – 307 MeV, and are in excellent agreement with the theoretical results quoted in Table 1 and the experimental value of 

50290±=∞k MeV quoted in the text. In the next paper, we hope to use the full exchange term instead of the  

zero-range pseudo potential used as a first approximation in this paper. 
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