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Abstract

The determination of binding energy per nucleon of infinite nuclear matter and its
compression modulus has been a great challenge for nuclear physicists for many
decades. In thiswork we have calculated the binding energy and compression modulus

koo of infinite nuclear matter from a density-dependent potential derived from a

variational approach. The density-dependent potential reproduces the binding energy of
nuclear matter of approximately -16 MeV at the normal nuclear matter saturation
density consistent with the best available density-dependent potentials derived from the

G-matrix approach. The results of the incompressibility modulus, koo is in excellent
agreement with the results of other workers.

1.0 Introduction

The use of density-dependent effective interactifmmsinelastic scattering as well as ion-ion ogtipatentials has
received a lot of attention for some time now [1,32 The pioneering work in this direction has mabe G-matrix
calculations of Bertsch and co-workers [1]. An e@sien of this work [4] and the large number of papeased on such
effective interactions has been phenomenon.

In a recent paper [5] we derived a similarly matieh effective interaction which was based on theekt order
constrained variation approach [5, 6, 7]. The itssof that paper compared very favourably with ibgults obtained from
the G-matrix calculations.

One of the stringent tests an effective interactimnst pass among other tests is to reproduce tidinigi energy of
nuclear matter of -16 MeV at the normal nuclear matter density: @17 fn*

The aim of this paper is to derive a density-depahéffective potential from the results of our wor Ref. [5] and then

use it to calculate the binding energy and the agesgion modulusk, of nuclear matter.

The present paper is organized as follows:

In Section 2, we give a brief summary of the methedd in deriving our effective interaction. In Sa&c 3, we derive
our density-dependent effective interaction. Int®@c4, we present the results of nuclear mattiuations with the present
effective interaction. The final Section is devotedhe conclusion of the paper.

2. Effective potential matrix elements.
The determination of the effective potential matebements of the nucleon-nucleon potential is netyweasy as such
potentials usually take on infinite values at vehgrt inter-nucleon distances of < 0.3 fm. For te&son, the wave function

must be correlated with a correlation functiofn(ij) such that asr — O, f (Ij) — O while the two-body potential

V”. — o asl — 0 and the matrix elements of the effective poter‘nglf given below become finite [5]:
B = (]2 1 (ii)v; £ (ii)l¢) M
i>]
In eqn. (1) |¢> is taken to be the harmonic oscillator wave functiwhile \/ij here is taken to be the Reid soft-core

potential [8]. In Ref. [5] we defined an effectiirderaction which is suitable for calculations pélastic scattering and ion-
ion optical potentials. This is taken to be the safnYukawa functions with different ranges to whittte two-body matrix
elements of eqn. (1) are fitted. Specifically thiss defined for the centrad)( spin-orbit (s) and tensort] channels as
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"1y /R,
where ther 's are the strengths of the effective interactidrich were determined by fitting the oscillator matlements

of egn. (2) to those of eqn. (1). The rangp<< 4were 0.25, 0.4, 0.7 and 1.414 fm. These rangeg Wezoretically

motivated by the one-boson exchanges. For exarhpléohgest range of 1.414 fm corresponds to thepiome exchanges
while the shorter ranges correspond to heavier mesgohanges such &5, 0 and G .

In Ref. [5] Table V, the strengths of our effeetiinteraction were determined by fitting the ostdl matrix elements of
eqgn. (2) to those of eqn. (1) as described aboke.r&sults were separated into various angular mtumechannels which
were; the singlet—even (SE), singlet-odd (SO) ldtipven (TE), triplet-odd (TO), the spin-orbit atite tensor channels.
Here, we are interested only in the first four aiela mentioned above and we shall use the redultalie V of Ref. [5] for
these channels.

3. Density-Dependent Effective Interactions.

In this Section we present the form of our dendigpendent effective nucleon-nucleon potential blétéor the calculation
of nuclear matter properties. Here the direct axchange potentials in the SE, SO, TE, and the Tahméls can be recast
into the spin-isopin formalism as [9]:

vD:%(zv$+3vTE+vS°+9vT°). (3)
with

V& =vPpIpPT, (4)
where P?and P’ are projection operators in the spin and isoshanoels. Hence,

v EX :%(:*,VSE+3VTE —VS°—9VT°)- ®)

Using the various ranges as defined in Table Veff [5], we obtain

e-4r e—z.sr
VP (r)=11012 - 2359 , (©6)
4r 2.5r
and
—4r -25r -0.7072 r
V()= 258 1503948 7847 % . Ko
4r 2.5r 0.707Z r

These results may be compared with the very pop&Y effective interaction derived from the G-matepproach given
by [10]:

—-4r -25r

e

Vo (r)=7999 .05 - 2134 85 ,
a4r 2.5r
ef4r efZ.Br efO.7072r
V & (r)= 4631 38 -1787 13 -7.847 ———-
4r 2.5r 0.707z r

As is well-known in nuclear matter calculationse thresence of the direct and exchange terms akmaot reproduce the
binding energy of nuclear matter, except a derggfyendence is included. We included the densitgm#ggnce in the form
similar to that of Ref. [2] in the form:

V(r.p)=v®(r)f (o), ®)

f(p)= AlL+Be™), ©)
whereA, Band & are constants.
With this form of the density dependence, the iigdinergy of nuclear matter per nucleon can beemris [3]:

0= Bk 1@y 4 (T eV = (o) 104

3, = [VP(r)dr,
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and

, j, (X
JB(X): 3 Jl)E )’
while jk(x) is the k™ -order spherical Bessel function.

The compression moduluk,, of the spin and isospin symmetric cold infinite leac matter (INM) is defined as
2 2

0 2D - 9p? 0 ? , j11

oke op P=Po

k, = k?

where the Fermi momentwlmF for the spin and isospin symmetric INM is given by
k =157p. (12)
Here 0 is the nucleonic density whil@, is the saturation density for the spin and isosginmetric INM.

For the calculation of the compression modulus weehused as a first approximation the zero-rangeiduspotential,
Joo (D)é(r) instead of the full exchange potential. In thisecave define [11]:

21,2
o= ke f(p.0)p3s + 3,4, 0): (13)
10m 2
where the zero-range pseudo-potential represetiiengingle-nucleon exchange term is given by [12]:
Joo @)= -276(1- 0.005 0)MeV fm?. (14)
Here the density-dependent part has been takes [tb3b
f(p.0)=ch-80)p*] (15)

which takes care of the higher order exchange tledPauli blocking effects, C arﬂ(D) are constantsﬁ(D) depends on

the energy wherem is the nucleonic mass which is equal to 931.494%/4 and Jp represents the volume integral of
the direct term supplemented by the zero-rangeduspotential having the form

JD(D):4HIVD(r)r2dr : (16)
The equilibrium density of nuclear matter is defifieom the saturation condition

ZT? =0- (17)
The expressions for the paramet&sand ,B(D) in eqn. (15) are respectively given by [11]

_|8-3p 2/3

pO)= {(g_sp)} p (18)

where
_ 10m O ,

P h? (1.5712,0)2/3

and
2h°k? (19)

L pl-580)0 7 3)]
Finally, the Compression modullg, can be evaluated as [11]:

3n’kE _ 5/3 . (20)
{Sm 5C B(0)p }

P=Po

k =

)

4, Results.

In Fig. 1, the graph of the calculated values of the bindiregggnper nucleon for infinite nuclear matter is plotted wlith t
requirement that the nuclear matter binding energy be reproduttelarrect nuclear matter density.

As can be seen from the graph, the binding energy per nudeonfifite nuclear matter ofl6 MeV was reproduced at the

nuclear density of = 017fm,
In Table 1, we have presented the results of our calculatiokg for different values o€ and ,B(D) Since the values

used for the saturation densityy, by different groups do differ, a narrow range of its acapt values (

P, =0.170-0.150 fm®) have been used. The values obtained for the compression sicaigies from 301 to 307 MeV

for the acceptable range of values of saturation densities used her
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Theoretical estimate by INM model [11] claims a well defined dablls value of K =288 + 20 MeV. The determination

of K_ based on the production of hard photons in heavy-idiisions leads to the experimental estimakg,= 290 £ 50

MeV [14]. The results of the present calculations are in ex¢agneement with the results of these researchers.
30

25 A
20 A
15

0.6 0.8 1

Density
Fig. 1,the graph of the calculated values of the binding energyyméean for infinite nuclear matter against densities.

Table 1.Compression Modulus at different saturation densities. €elts of the present calculations fd¢, are given.
These should be compared with those in ref. [11]

P ( fm"3) ,B(D) ( fmz) C[11] Cpresent koo (MeV) [11] koo (MeV) present

0.170 1.551 (1.98) 1.93 (309.6) 307.5

0.165 1.586 (2.02) 1.96 (308.2) 305.5

0.160 1.624 (2.07) 2.01 (306.9) 304.7

0.155 1.664 (2.11) 2.06 (305.5) 303.7

0.150 1.705 (2.16) 2.10 (304.0) 301.4
5. Conclusion.

We have derived a density-dependent potential from variationaboh&thich reproduces the binding energy per nucleon of
infinite nuclear matter at the correct nuclear matter densityl@ff@i®. We have next calculated the compression modulus of

the spin and isospin symmetric cold INM using the paaéniihe resulting values df_ are found to lie between the range
301 — 307 MeV, and are in excellent agreement with the eétieal results quoted in Table 1 and the experimental value of
k, =290+ 50MeV quoted in the text. In the next paper, we hope to wstuthexchange term instead of the

zero-range pseudo potential used as a first approximatibisipaper.
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