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Abstract

This paper uses the principal component analysi<C@ to examine the possibility
of using few explanatory variables (X's) to explathe variation in Y. It applied PCA to
assess the performance of students in Abia Statéyteohnic, Aba, Nigeria. This was
done by estimating the coefficients of eight expddory variables in a regression
analysis. The explanatory variables involved in ghianalysis show a multiple
relationship between a dependent variable and inelegpent variables. A correlation
table was obtained from which the characteristic ots were extracted. Also, the
orthonormal basis was used to establish the linéagdlependence of the variables. The
first principal component accounted for 51.6 perdeaf the total variation, while the
second principal component accounted for 23.3 petceThe descriptive statistics and
plots were considered. The principal componentddael good estimates, which leads to
the structural co-efficient of the regression modghis led to the conclusion that PCA
uses few explanatory variables to explain variatioin a dependent variable and is
therefore an efficient tool for performance assessnt.
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1.0 Introduction

In the institutions of higher learning, such as \nsities, Polytechnics, and Colleges of Educatomong others,
students’ academic performances in a semesteudged by their Grade points Average (GPA), the &madints Average
depends on the grades made by students on theesaffered together with the credit units attacteethem. To obtain the
Grade Point Average involves taking the summatieer ahe product of the grades made on each cooagsghter with the
credit units assigned to them and dividing the ltdsuthe total credit units assigned to the cositbat were offered in that
semester, where grades are represented in numbers.

The Grade Point Average could be seen as respamsbles(X’s). There are various statistical teghes used in the
estimation of the response variable from the exitany variable. The major statistical tool for estion of the coefficients
of the explanatory variables is the principal comgi@ analysis. The other statistical tools applaed correlation,
orthonormality, descriptive statistics and plotsgoaphs. However, PCA was invented in 1901 by Haarson. PCA is
mostly used as a tool in exploratory data analgsid for making predictive models. PCA can be dopecigenvalue
decomposition of a data covariance matrix or siagualue decomposition of a data matrix, usualtgrainean centering the
data for each attribute. The results of a PCA auwally discussed in terms of component scores,ishdhe transformed
variable values corresponding to a particular éaghe data and loadings the weight by which edahdardized original
variable should be multiplied to get the comporssatre (Shayjd]).
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1. Objectives Of Study

The objectives of this study include the following:

i. To ascertain whether total variation in the dependeariable (Y) could be explained by few explamgto
variables(X’s).

ii. To ensure the orthonormality of the explanatoryaldes, such that the principal components areogadhal.

iii. To solve the problem of multi-colinearity in a niple regression model which is always present imadel of
multiple relationship

2. Literature Review

Principal components analysis is a technique fudifig a set of weighted linear composites of oagwariables such
that each composite (a principal component) is tetated with the others. It was originally desidr®y Pearsof2] though
it is more often attributed to Hotelling [3] whogmosed it independently. The first principal compatnis a weighted linear
composite of the original variables with weightosén so that the composite accounts for the maxiwanation in the
original data. The second component accounts miaximum variation that is not accounted for ia fiist. The third
component likewise accounts for the maximum givem first two components and so on. These weiglgsfarnd by a
matrix analysis technique called eigen-decompasitiich produces eigenvalues. Eigenvalues reprabenamount of
variation accounted for by the composite and eigetors give the weights of the original variables($ttp://www.pcp-
net.org/encyclopaedia/pca.htmi[4]).

Principal component analysis as a very useful stedil technique later found application in varidiegdds. PCA is
recommended as an explanatory tool to uncover umknends in the data. According to Jollifte Miranda et &f,
“Principal component analysis (PCA) is a mathenadtizocedure that uses an orthogonal transformatiaonvert a set of
observations of possibly correlated variables aset of values of uncorrelated variables callégcjal components”. The
number of principal components is less than or etughe number of original variables. This tramsfiation is defined in
such a way that the first principal component hashigh a variance as possible (that is, accountsagomuch of the
variability in the data as possible), and each sading component in turn has the highest variarussiple under the
constraint that it be orthogonal to (uncorrelatéth)sthe preceding components. Principal componargsguaranteed to be
independent only if the data set is jointly normalistributed.

PCA is sensitive to the relative scaling of thegmral variables. Depending on the field of appimat it is also named
the discrete Karhunen-Loéevetransform (KLT), thedlitg transform or proper orthogonal decomposit{®®D).In fact,
several data decomposition techniques are avaifablihis purpose: Principal Components Analysi€AP is among these
techniques that reduces the data into two dimensibne set of data or elements or numbers arraingadable (matrix) as
rows(row vector) or columns(column vectors) calledtors are being used. Moreover, since the Ortlmalobasis is a set
of vectors which forms a basis for a vector spawk @ach of these basis vectors are normalizedhadare orthogonal to
each other.

Axler [7] observed that Orthonormal sets are ngteemlly significant on their own. However, theysplay certain
features that make them fundamental in exploriegrtion ofdiagonalizabilityof certain operator on vector spaces.Wang et
al [8] confirmedthat PCA of a multivariate Gaussdistribution centered at (1,3) with a standardiat&n of 3 in roughly
the (0.878, 0.478) direction and of 1 in the orttwey direction. The vectors shown are the eigemveatf the covariance
matrix scaled by the square root of the correspandigenvalue, and shifted so their tails are ettlean. According [9] and
[10] confirms that orthonormal basis is a set aftees which forms a basis for a vector space aot efithese basis vectors
are normalized and they are orthogonal to eachr.oBvincipal Components Analysis (PCA) can alsosben as a special
case of the more general method of factor analyhisse sole aim is to construct a set of variabfesesv variables (Pi)
called principal components which are linear corabon of the X’s(see [11]).
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2. MATERIALS AND METHODS

The data for this work was collected from the Stats Department of Abia State Polytechnic, Abaydxia. It shows the
Grade Points(GP) and Grade Point Average(GPA) wo&thiby 2009/2010 National Diploma final year studeof the
Department.The statistical method include tableafelation co-efficient to check if there is arglationship among the
explanatory variables, descriptive statistics dbsay the features of the data, orthonormality piotovercome multi-
collinearity and show trend or pattern of the erpltary variables and the principal components wisicbounts for the
variation among the variables.

Table 1 shows courses offered and their creditsutiite grades obtained in the various courses lan@Gtade Points
Average (GPA). All the analyses were carried @imgiEviews 7 software.

TABLE 1: Students’ Grades and Grade Point Average

Courses GNS COM STA STA STA STA STA STA G.P.A REMARK
201 211 211 212 213 214 215 216

Credit 3 3 3 2 2 4 2 2

Units

Grades AB A AB B AB A A AB 3.66 PASS
AB AB A BC B B A AB 3.23 PASS
B C AB BC C B BC A 2.80 PASS
AB AB B C BC A B BC 3.11 PASS
BC BC B B AB BC C BC 2.70 PASS
B BC C B B BC BC BC 2.61 PASS
BC C B C BC BC C B 2.36 PASS

GRADE POINTS
A=4.00.AB=3.50,B=3.00
BC=2.50,C=2.00,F=0.00

5. Analysis And Discussion Of Results

A. Descriptive statistics for the set of data

Table 2: Descriptive statistics for the set of data

GNS201 COoM211 STA211 STA212 STA213 STA214 STA215 TAZ16

Mean 3.071429 2.857143 3.142857 2.571424 7285 3.071429 2.857143 2.928571
Median 3.000000 2.500000 3.000000 2.50000( 000R00 3.000000 2.500000 2.500000
Maximum 3.500000 4.000000 4.000000 3.000000 .50@®00 4.000000 4.000000 4.000000
Minimum 2.500000 2.000000 2.000000 2.000000 .00@000 2.500000 2.000000 2.000000
Std. Dev. 0.449868 0.801784 0.626783 0.449868 0.556349 0.672593 0.852168 0.731925
Skewness -0.272380 0.235217 -0.570697 -0.272380 0.192012 0.615800 0.476426 0.260009
Kurtosis 1.493080 1.486626 2.871901 1.493080 1.856509 1.716759 1.668234 1.609630
Jarque-Bera 0.748875 0.732553 0.384764 0.5887 0.424388 0.922701 0.782112 0.642702
Probability 0.687676 0.693311 0.824992 0.68767 | 0.808808 0.630432 0.676342 0.725169
Sum 21.50000 20.00000 22.00000 18.0000(¢ POMO 21.50000 20.00000 20.50000
Sum Sq. Dev. 1.214286 3.857143 2.357143 18842 1.857143 2.714286 4.357143 3.214286
Observations 7 7 7 7 7 7 7 7

Source: Authors computation usikgiews 7 software.

The descriptive statistics shows the unique feattlre data that is being used. For instance, ikTabthe mean value of
STA 211(3.142857) is the highest among othershmititedian of (GNS201, STA211, STA213, STA214) 9B000 while
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the median for the remaining variables is equal.5®M0000.Table 2 also shows that 4.000000 is theénmen and 2.000000
the minimum scores collected.STA215 is having tighdst standard deviation while GNS201 and STA2¢ihiga0.449868

each are the best in terms of selecting variable minimum standard deviation. The values of skessrend kurtosis were
also computed for the seven observations. In teming the probability of the explanatory variabtesnputed in Table 2 at
5% level of significance, we conclude that all Wiaeiables used in this work are statistically Sfigant.

B. Pie chart of the explanatory variables
Standard Deviations

.

Figure 1: Visual plot of the explanatory variables usingnsi@rd deviations. Figure 1 confirms the resultshage in
Table 2 about the standard deviation that STA2X@isng the highest standard deviation while GNS&20d STA211having
0.449868 each are the best in terms of selectirighla with minimum standard deviation.

C. Graphs of the explanatory variables
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Figure 2: Visual plot of the explanatoryvariables using data
It is pertinent to note that the sole aim of thést®n is to show the patterns or trends of tha.d&atom the visual plot in
Figure 2, there are trends in all the explanat@nyables, which indicate that the data set is tatioary.It also shows that
all theexplanatoryvariables relate to each other.

C. Correlation analysis

Table 3: Correlation Table for the explanatory variables

com211 GNS201 STA211 STA212 STA213 STA214 STA215| TAZL6

COM211 | 1.000000 0.841625 0.379023 0.148522 070B2 0.794719 0.879892 0.26371§
GNS201 0.841625 1.000000 0.40109 -0.029412 47666 0.806562 0.900552 0.524244
STA211 0.379023 0.401090 1.00000d -0.189990 51209 0.367109 0.590642 0.661724
STA212 0.148522 -0.029412 -0.18999¢ 1.000000  13a77 -0.157378 0.139741 0.271163
STA213 0.507072 0.047565 -0.05120¢ 0.713477  0QDOO 0.031814 0.301321 -0.131559
STA214 0.794719 0.806562 0.367109 -0.157378 31804 1.000000 0.675036 0.350641
STA215 0.879892 0.900552 0.590642 0.139741 01331 0.675036 1.000000 0.582143
STA216 0.263718 0.524249 0.661724 0.271163  31%39 0.350647 0.582142 1.00000

Source: Authors computation usikgiews 7 software.

It is pertinent to note that Table 3 is a tableofrelation coefficients between each pair of J@da in which principle
components can be computed. Table 3 confirms lieaé texists a relationship between the variables.

D. Orthogonality

Orthogonality occurs when two things can vary iretegently, they are uncorrelated, or they are pelipatar. The
essence of this section is to ensure that the eafey variables are linearly independent alsoheck multi-colinearity
among the variables.The following procedures caruged to compute the principal component manudlhe following
results were obtained from the correlation tableb(€ 3).

= @)

Where

K
> =5.408,i=1,23,.... k k=8.

r=i

The L; are the loadings for first the principal compongamoted as P
Py = 113Xq + 112X5 + 115X3 +115X4 + 115X5 + 116X6 + 117X7 + 116X 2)
The Eigen value of characteristic root for thetfirgncipal component was obtained as:
NI PR R ®
Percentage of variation aclc:c\;unted for hy{R%) is

A 100
P%="tx— 4
170 Ko 1 4)

Following the same procedure, the second principalponent was obtained using the correlation tabl®llows:
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P2:|21x1+|22x2+|23>(3+|22(4+|22<5+|2%(él-l %:}_I Qg (5)
The Eigen value of characteristic root for the sekcprincipal component was obtained as:
. 2 2 2 2 2 2 2 2 2
A2:z|22:|21+|22+|23+|24+|25+|26i_| 27-I-I z (6)
i=v
A, 100
Pz% =12 7 (7)
k 1

In this work the computation of the principal compat was done using Eviews 7 as shown in Figure 1

Orthonormal loading plot
Orthonormal Loadings
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Figure 3: Orthonormal loading plot.
Source: Authors computation usikgiews 7 software.

In Figure 3, theorthonormal loading of the exptana variables are plotted and theresults of tii¢ pre as given in
Table 4.

Table 4: Result from the orthonormal loadings showing tbiial values of the plots.

Explanatory variables Orthonormal loadings
GNS 201 2(0.44,0.18)
COM 211 5(0.45,-0.09)
STA 211 8(0.31,-0.27)
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STA 212 11(0.05,0.63)
STA 213 14(0.12,0.67)
STA 214 17(0.40,-0.14)
STA 215 20(0.47,0.05)
STA 216 23(0.31,-0.13)

Source: Authors computation usikgiews 7 software.

The Table 4 results are centered at (1, 3) wittaadard deviation of 3 in the following directiogisen in table 4 and of
1 in the orthogonal direction (seeWang et®#&http://en.wikipedia.org/wiki/pcd®). The result is in accordance with the
apriority theorem on PCA. It also shows that thplaxatory variables are linearly independent.

The component 1 and component 2 of the principahpmments were plotted on the orthonormal loadihgsvas
discovered that more than 75 percent approximatélyhe total variations were explained by the fifato) principal
components. The 75 percent accounted for is ageoy estimate, which leads to the structural ciwiefit of the regression
model.

6. Conclusion

This paper examines whether total variation in thependent variable Y could be explained by few axgiory
variables(X’s).It starts by analyzing the descriptstatistics and the visual plots of the set e¢ddahe results showed that at
5% level of significance, all the variables usedthiis work are statistically significant as showrTiable 2.

However, for the orthonormality of the explanatovgriables, correlation analysis was carried outcWhieads to
orthogonality of the variables.Orthogonality occwtsen two things can vary independently, thathisytare uncorrelated or
they are perpendicular.

Furthermore, the result of the orthogonal analygés shown using orthonormality loading plot. Thistpshows the
individual plot of the variables. The result oflmhormality shows that there is no multi-colineabetween the variables.
The graphs were used to depict or confirm thatdtrenpattern of the explanatory variables. The pdperefore concludes
that having isolated the Principal Components,fit# two accounted for more than 75% of the vioiatset; this gives
better estimate for the response variable in tleerde of multi- colinearity.With PCA therefore, iaions in the response
variable can be efficiently explained using few lex@atory variables.
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