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Abstract 

 
This paper uses the principal component analysis (PCA) to examine the possibility 

of using few explanatory variables (X’s) to explain the variation in Y. It applied PCA to 
assess the performance of students in Abia State Polytechnic, Aba, Nigeria. This was 
done by estimating the coefficients of eight explanatory variables in a regression 
analysis. The explanatory variables involved in this analysis show a multiple 
relationship between a dependent variable and independent variables. A correlation 
table was obtained from which the characteristic roots were extracted. Also, the 
orthonormal basis was used to establish the linear independence of the variables.  The 
first principal component accounted for 51.6 percent of the total variation, while the 
second principal component accounted for 23.3 percent. The descriptive statistics and 
plots were considered. The principal components yielded good estimates, which leads to 
the structural co-efficient of the regression model.This led to the conclusion that PCA 
uses few explanatory variables to explain variations in a dependent variable and is 
therefore an efficient tool for performance assessment. 
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1.0 Introduction 

In the institutions of higher learning, such as Universities, Polytechnics, and Colleges of Education among others, 
students’ academic performances in a semester are judged by their Grade points Average (GPA), the Grade Points Average 
depends on the grades made by students on the courses offered together with the credit units attached to them. To obtain the 
Grade Point Average involves taking the summation over the product of the grades made on each course together with the 
credit units assigned to them and dividing the result by the total credit units assigned to the courses that were offered in that 
semester, where grades are represented in numbers. 

The Grade Point Average could be seen as response variables(X’s). There are various statistical techniques used in the 
estimation of the response variable from the explanatory variable. The major statistical tool for estimation of the coefficients 
of the explanatory variables is the principal component analysis. The other statistical tools applied are correlation, 
orthonormality, descriptive statistics and plots or graphs. However, PCA was invented in 1901 by Karl Pearson. PCA is 
mostly used as a tool in exploratory data analysis and for making predictive models. PCA can be done by eigenvalue 
decomposition of a data covariance matrix or singular value decomposition of a data matrix, usually after mean centering the 
data for each attribute. The results of a PCA are usually discussed in terms of component scores, that is, the transformed 
variable values corresponding to a particular case in the data and loadings the weight by which each standardized original 
variable should be multiplied to get the component score (Shaw [1]).  
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1. Objectives Of Study   
 

The objectives of this study include the following: 
i. To ascertain whether total variation in the dependent variable (Y) could be explained by few explanatory 

variables(X’s). 
ii.  To ensure the orthonormality of the explanatory variables, such that the principal components are orthogonal. 
iii.  To solve the problem of multi-colinearity in a multiple regression model which is always present in a model of 

multiple relationship     
 

2. Literature Review 
Principal components analysis is a technique for finding a set of weighted linear composites of original variables such 

that each composite (a principal component) is uncorrelated with the others. It was originally designed by Pearson [2] though 
it is more often attributed to Hotelling [3] who proposed it independently. The first principal component is a weighted linear 
composite of the original variables with weights chosen so that the composite accounts for the maximum variation in the 
original data. The second component accounts for the maximum variation that is not accounted for in the first. The third 
component likewise accounts for the maximum given the first two components and so on. These weights are found by a 
matrix analysis technique called eigen-decomposition which produces eigenvalues. Eigenvalues represent the amount of 
variation accounted for by the composite and eigenvectors give the weights of the original variables(see http://www.pcp-
net.org/encyclopaedia/pca.html[4]).  

Principal component analysis as a very useful statistical technique later found application in various fields. PCA is 
recommended as an explanatory tool to uncover unknown trends in the data. According to Jolliffe[5], Miranda et al[6], 
“Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to convert a set of 
observations of possibly correlated variables into a set of values of uncorrelated variables called principal components”. The 
number of principal components is less than or equal to the number of original variables. This transformation is defined in 
such a way that the first principal component has as high a variance as possible (that is, accounts for as much of the 
variability in the data as possible), and each succeeding component in turn has the highest variance possible under the 
constraint that it be orthogonal to (uncorrelated with) the preceding components. Principal components are guaranteed to be 
independent only if the data set is jointly normally distributed.  

PCA is sensitive to the relative scaling of the original variables. Depending on the field of application, it is also named 
the discrete Karhunen–Loèvetransform (KLT), the Hotelling transform or proper orthogonal decomposition (POD).In fact, 
several data decomposition techniques are available for this purpose: Principal Components Analysis (PCA) is among these 
techniques that reduces the data into two dimensions. The set of data or elements or numbers arranged in a table (matrix) as 
rows(row vector) or columns(column vectors) called vectors are being used. Moreover, since the Orthonormal basis is a set 
of vectors which forms a basis for a vector space and each of these basis vectors are normalized and they are orthogonal to 
each other. 

Axler [7] observed that Orthonormal sets are not especially significant on their own. However, they display certain 
features that make them fundamental in exploring the notion of diagonalizability of certain operator on vector spaces.Wang et 
al [8] confirmedthat PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly 
the (0.878, 0.478) direction and of 1 in the orthogonal direction. The vectors shown are the eigenvectors of the covariance 
matrix scaled by the square root of the corresponding eigenvalue, and shifted so their tails are at the mean. According [9] and 
[10] confirms that orthonormal basis is a set of vectors which forms a basis for a vector space and each of these basis vectors 
are normalized and they are orthogonal to each other. Principal Components Analysis (PCA) can also be seen as a special 
case of the more general method of factor analysis whose sole aim is to construct a set of variables of new variables (Pi) 
called principal components which are linear combination of the X’s(see [11]). 
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2. MATERIALS AND METHODS 
 
The data for this work was collected from the Statistics Department of Abia State Polytechnic, Aba, Nigeria. It shows the 

Grade Points(GP) and Grade Point Average(GPA) obtained by 2009/2010 National Diploma final year students of the 
Department.The statistical method include table of correlation co-efficient to check if there is any relationship among the 
explanatory variables, descriptive statistics describing the features of the data, orthonormality plot to overcome multi-
collinearity and show trend or pattern of the explanatory variables and the principal components which accounts for the 
variation among the variables. 

Table 1 shows courses offered and their credit units, the grades obtained in the various courses and the Grade Points 
Average (GPA).  All the analyses were carried out using Eviews 7 software. 

 TABLE 1: Students’ Grades and Grade Point Average 
 

Courses   GNS 
201 
 

COM 
211 
 

STA 
211 
 

STA 
212 
 

STA 
213 
 

STA 
214 
 

STA 
215 
 

STA 
216 
 

G.P.A 
 

REMARK 
 

Credit 
Units 

3 3 3 2 2 4 2 2   

Grades AB A AB B AB A A AB 3.66 PASS 
AB AB A BC B B A AB 3.23 PASS 
B C AB BC C B BC A 2.80 PASS 
AB AB B C BC A B BC 3.11 PASS 
BC BC B B AB BC C BC 2.70 PASS 
B BC C B B BC BC BC 2.61 PASS 
BC C B C BC BC C B 2.36 PASS 

 

GRADE POINTS 
A=4.00.AB=3.50,B=3.00 
BC=2.50,C=2.00,F=0.00 

 

5. Analysis And Discussion Of Results 
 

A.  Descriptive statistics for the set of data 
 
Table 2: Descriptive statistics for the set of data 
 

 

Source: Authors computation using Eviews 7 software. 
 
The descriptive statistics shows the unique features the data that is being used. For instance, inTable 2, the mean value of 

STA 211(3.142857) is the highest among others but the median of (GNS201, STA211, STA213, STA214) is 3.000000 while  
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 GNS201 COM211 STA211 STA212 STA213 STA214 STA215 STA216 
 Mean  3.071429  2.857143  3.142857  2.571429  2.857143  3.071429  2.857143  2.928571 
 Median  3.000000  2.500000  3.000000  2.500000  3.000000  3.000000  2.500000  2.500000 
 Maximum  3.500000  4.000000  4.000000  3.000000  3.500000  4.000000  4.000000  4.000000 
 Minimum  2.500000  2.000000  2.000000  2.000000  2.000000  2.500000  2.000000  2.000000 
 Std. Dev.  0.449868  0.801784  0.626783  0.449868  0.556349  0.672593  0.852168  0.731925 
 Skewness -0.272380  0.235217 -0.570697 -0.272380 -0.192012  0.615800  0.476426  0.260009 
 Kurtosis  1.493080  1.486626  2.871901  1.493080  1.856509  1.716759  1.668234  1.609630 
         
 Jarque-Bera  0.748875  0.732553  0.384764  0.748875  0.424388  0.922701  0.782112  0.642702 
 Probability  0.687676  0.693311  0.824992  0.687676  0.808808  0.630432  0.676342  0.725169 
         
 Sum  21.50000  20.00000  22.00000  18.00000  20.00000  21.50000  20.00000  20.50000 
 Sum Sq. Dev.  1.214286  3.857143  2.357143  1.214286  1.857143  2.714286  4.357143  3.214286 
         
 Observations  7  7  7  7  7  7  7  7 



610 

 

 
Principal Component Analysis as an Efficient …      Acha, Chigozie Kelechi       J of NAMP 

 
the median for the remaining variables is equal to 2.500000.Table 2 also shows that 4.000000 is the maximum and 2.000000 
the minimum scores collected.STA215 is having the highest standard deviation while GNS201 and STA211having 0.449868 
each are the best in terms of selecting variable with minimum standard deviation. The values of skewness and kurtosis were 
also computed for the seven observations.  In fact, using the probability of the explanatory variables computed in Table 2 at 
5% level of significance, we conclude that all the variables used in this work are statistically significant. 

 
B. Pie chart of the explanatory variables 

 
Figure 1: Visual plot of the explanatory variables using standard deviations. Figure 1 confirms the results we have in 

Table 2 about the standard deviation that STA215 is having the highest standard deviation while GNS201 and STA211having 
0.449868 each are the best in terms of selecting variable with minimum standard deviation. 

 
C. Graphs of the explanatory variables 
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   Figure 2: Visual plot of the explanatoryvariables using raw data 
 
It is pertinent to note that the sole aim of this section is to show the patterns or trends of the data. From the visual plot in 

Figure 2, there are trends in all the explanatory variables, which indicate that the data set is not stationary.It also shows that 
all theexplanatoryvariables relate to each other. 

 
C.  Correlation analysis 
 
Table 3: Correlation Table for the explanatory variables 
 

Source: Authors computation using Eviews 7 software. 
 
It is pertinent to note that Table 3 is a table of correlation coefficients between each pair of variables in which principle 

components can be computed. Table 3 confirms that there exists a relationship between the variables.  
 
D. Orthogonality 
 
Orthogonality occurs when two things can vary independently, they are uncorrelated, or they are perpendicular. The 

essence of this section is to ensure that the explanatory variables are linearly independent also to check multi-colinearity 
among the variables.The following procedures can be used to compute the principal component manually. The following 
results were obtained from the correlation table (Table 3). 

1

.
K

i
ij

r i
L ==

Σ

∑
        (1) 

Where 
 

   1

. 29.246
K

i

r i
=

=∑ ,
K

r i=
∑ =5.408, i=1,2,3,…, k, k = 8. 

 
The Lij are the loadings for first the principal component denoted as P1. 
 

P1 = I11X1 + I12X2 + I13X3 +I14X4 + I15X5 + I16X6 + I17X7 + I18X8   (2) 
  

The Eigen value of characteristic root for the first principal component was obtained as: 

2 2 2 2 2 2 2 2 2
1 11 11 12 13 14 15 16 17 18

k

i v

I I I I I I I I Iλ
=

= = + + + + + + +∑    (3) 

Percentage of variation accounted for by P1 (P1%) is 
 

1
1

100
%

1
P x

k

λ=        (4) 

 
Following the same procedure, the second principal component was obtained using the correlation table as follows: 
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 COM211 GNS201 STA211 STA212 STA213 STA214 STA215 STA216 
COM211  1.000000  0.841625  0.379023  0.148522  0.507072  0.794719  0.879892  0.263718 
GNS201  0.841625  1.000000  0.401090 -0.029412  0.047565  0.806562  0.900552  0.524249 
STA211  0.379023  0.401090  1.000000 -0.189990 -0.051209  0.367109  0.590642  0.661724 
STA212  0.148522 -0.029412 -0.189990  1.000000  0.713477 -0.157378  0.139741  0.271163 
STA213  0.507072  0.047565 -0.051209  0.713477  1.000000  0.031814  0.301321 -0.131559 
STA214  0.794719  0.806562  0.367109 -0.157378  0.031814  1.000000  0.675036  0.350647 
STA215  0.879892  0.900552  0.590642  0.139741  0.301321  0.675036  1.000000  0.582142 
STA216  0.263718  0.524249  0.661724  0.271163 -0.131559  0.350647  0.582142  1.000000 
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2 21 1 22 2 23 3 24 4 25 5 26 6 27 7 28 8P I X I X I X I X I X I X I X I X= + + + + + + +   (5) 

 
The Eigen value of characteristic root for the second principal component was obtained as: 
 

2 2 2 2 2 2 2 2 2
2 22 21 22 23 24 25 26 27 28

k

i v

I I I I I I I I Iλ
=

= = + + + + + + +∑     (6) 

 

2
2

100
%

1
P x

k

λ
=         (7) 

In this work the computation of the principal component was done using Eviews 7 as shown in Figure 1 
 
 
 Orthonormal loading plot 

 
 

Figure 3: Orthonormal loading plot. 
Source: Authors computation using Eviews 7 software. 

 In Figure 3, theorthonormal loading of the explanatory variables are plotted and theresults of this plot are as given in 
Table 4. 

 
Table 4: Result from the orthonormal loadings showing the actual values of the plots. 

Explanatory variables Orthonormal loadings 
GNS 201 2(0.44,0.18) 
COM 211 5(0.45,-0.09) 
STA 211 8(0.31,-0.27) 
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STA 212 11(0.05,0.63) 
STA 213 14(0.12,0.67) 
STA 214 17(0.40,-0.14) 
STA 215 20(0.47,0.05) 
STA 216 23(0.31,-0.13) 

 
Source: Authors computation using Eviews 7 software. 
 
The Table 4 results are centered at (1, 3) with a standard deviation of 3 in the following directions given in table 4 and of 

1 in the orthogonal direction (seeWang et al [8]&http://en.wikipedia.org/wiki/pca[12]). The result is in accordance with the 
apriority theorem on PCA. It also shows that the explanatory variables are linearly independent. 

The component 1 and component 2 of the principal components were plotted on the orthonormal loadings. It was 
discovered that more than 75 percent approximately of the total variations were explained by the first (two) principal 
components. The 75 percent accounted for is a very good estimate, which leads to the structural co-efficient of the regression 
model. 

 
 
6. Conclusion 
This paper examines whether total variation in the dependent variable Y could be explained by few explanatory 
variables(X’s).It starts by analyzing the descriptive statistics and the visual plots of the set of data. The results showed that at 
5% level of significance, all the variables used in this work are statistically significant as shown in Table 2. 
However, for the orthonormality of the explanatory variables, correlation analysis was carried out which leads to 
orthogonality of the variables.Orthogonality occurs when two things can vary independently, that is, they are uncorrelated or 
they are perpendicular. 
Furthermore, the result of the orthogonal analysis was shown using orthonormality loading plot. This plot shows the 
individual plot of the variables. The result of orthonormality shows that there is no multi-colinearity between the variables. 
The graphs were used to depict or confirm that trend or pattern of the explanatory variables. The paper therefore concludes 
that having isolated the Principal Components, the first two accounted for more than 75% of the variation set; this gives 
better estimate for the response variable in the absence of multi- colinearity.With PCA therefore, variations in the response 
variable can be efficiently explained using few explanatory variables. 
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