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Abstract

In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of
various orders and behaviour of the causality parameter of ARMA model is investigated. It is
deduced that the behaviour of causality parameter ¥; depends on positive and negative values
of autoregressive parameter ¢p and moving average parameter 6. The causality parameter is
skewed to the right for positive values of ¢ and sinusoidal for negative values of ¢ while
invertibility parameter is sinusoidal for positive values of 6.
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1.0 Introduction

When fitting ARMA model, we must check whether &tadrity, causality and invertibility conditionseasatisfied. If the
pure AR form of time series is of finite order, there MA form will be of infinite order; if the parMA form is of finite
order the pure AR is of infinite order. If both tAR and MA parts of an ARMA are of finite order,thdhe pure AR and the
pure MA are of infinite order. Therefore while a deb has various representations it makes sensmkofbr the simplest
representations to estimate.

Over the last years there has been growing intémegtaphical models and in particular in thoseddasn directed
acyclic graphs as a general framework to descritukitafer causal relations [1]. This new graphicap@ach is related to
other approaches to formalize the concept of caysalch as Neyman and Rubin's potential-responsdeh{2] and path
analysis or structural equation models [3]. Théelatoncept has been applied in particular by ecosts to describe the
equilibrium distributions of systems which typigaéivolve over time.

Anderson [4] deduced conditions for the general Mg\Average process, of ordgrto be invertible or borderline non-
invertible. He termed the conditions as acceptgtdibnditions. It turned out that they dependedhenmagnitude of the final
moving average parameté, If |0q| > 1, the process is not acceptable. Sh¢aj,4| = 1, the conditions, for any particulgy
follow simply if use is made of the remainder theror When|9q| < 1, an appeal was made to ROUCH* E'S theorem, to
establish the conditions. Analogous stationarigules immediately follow for autoregressive proesss

Mikosch et al [5] considered ARMA process of thenfiop (L)X, = 6(L)Z,, where the innovationg, belong to the
domain of attraction of a stable law, so that reitineX, have a finite variance. They estimated the coefiis of¢p andé
using Whittle estimator based on sample periodogrd™d sequence. They showed that their estimat@seveonsistent,
obtained their asymptotic distributions and shothed they converged to the true values faster iame usuak? case.

In this paper, ARIMA model of various orders aregented in causal and inverted form, behaviouraofality and
invertibility parameters are investigated and theameters of ARIMA were evaluated for various valoép and c ag = 0
using ordinary least squares method and Crammags r

2. Autoregressive Moving Average Process

The need for estimating the parameters of an ARBIA)( process arises in many applications both in $igracessing
and in automatic control. One subset of ARMA modmls the so-called autoregressive AR models while the other is
moving average or MA models. The notation ARMA ¢p,refers to the model with p autoregressive teams$ g moving
average terms. This model contains the AR (p) a”d(&y) models,

Ve =P1YVe-1 t DoYe o+ o GpYep &+ 0161 F 026+ .+ OhEg (1)
The termse,y,_, through¢,y,_,, are the autoregressive portion of the filter. Thense, throughf,ec._, are a moving

average of the white noise input process. Autossive integrated moving average model (ARIMA) igemeralisation of
ARMA model. It consists of Autoregressive model (jARitegrated part (I; which is differencing terar)d moving average
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model (MA). It is employed when time series is rgtationary. p is the order of ARd is the number of times a series is
differenced to assume stationarity anid the order of MA.

Specification of ARMA models in terms of lag operatr

When the models are specified in terms of the lpgrator L, the AR (p) model is given hy = (1 -3, ¢>iL")yt =
d(L)y,, wherep(L) =1—3_, ¢;L' and MA (q) model is given by, = (1 + X7, 6;L)e, = 8(L)e,, where(L) =1 +
¥, 6,L'. ARMA (p, q) is given as

(1 - ?:1 ¢iLi)yt = (1 + 25;1 giLi)‘gt (2)
or more concisely(L)y, = 6(L)¢&, which impliesy, = y¥(L)¢;, where

6(L) 146, L+6,L%+ .. +6,LP

Y(UL)=—= = ®3)

dWL)  1-¢1L—yLl%— .—¢ppLP

The ARMA process is stationary if

[oe]
Dl <
j=1

This happens if the seriggZ) converges for every Z witff| < 1. Sincey(Z) is a rational function, the series converges
for every Z with|Z| < 1 if the complex zeros ap(Z) lie outside the unit circle. If we have a statignprocess, then since
v, = Y (L)e;, and the expected valuesapfare all 0, the expected valueygfis also 0.
An ARMA processy; is invertible (strictly, an invertible function ef) if there is a

n(l) =my + mL + ml? + __

with

Dl <o
j=0
ande, = m(L)y,.
An ARMA processy; is causal if [7] there is a
Y(L) = + Pl + 1/)2L2 +___
with $7.,|9;| < 0 andy, = p(L)e,.
3. Causality of ARMA processes

An ARMA (p, g) process is causal if the absolute value of taeameters of ARMA[, q) model satisfy|¢;| < 1 for

i=1,...,p. If an ARMA process is causal, it is stationary. ¢ and & have no common factors, a (uniqusgtionary

solution to¢(L)y, = 8(L)e, exists if and only ifiZ| = 1 implies¢(Z) =1 — ¥, ;2" # 0. The ARMA (p, g) process is

causal if and only if |Z] < 1 implies¢(Z) =1 —XF_, ¢;Z" # 0. It is invertible if and only if |Z| < 1 implies8(Z) =1 +
1,628 0.

Presentation of some ARMA processes in causal form
Here we present some ARMA process of various orthecausal form of the process in order to provadeseful way of
generating a random sequence. That is, we shavearlprocesg, as a linear combination of white noise variates

ARMA (1, 1)
Ve=CH+ Py, 1 +& +0&_4 (4)
Ve = TC@ +e+(P+0)e1+ (P2 +0p)er_y + (P32 +0dPe_ s+ ..
Ve = (1+¢) te + X0 (P + 00 e, i=1,2,.. (5)
Ve =gyt Do it (6)(6)
where
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1, ifi=0
Vi = {¢i +6¢i1, ifi=1,23.. Q)
ARMA (1, 2)
Ye=C+ Py + &+ 0184 tezst—z (8)
c ) ) )
Ve = oy et @+ s + ) (B4 01917 4 690 ey ©
i=2
¢ + ill} (10)
= Y
yt (1 _¢) T~ 1ct—i
where
1, ifi=0
P = ¢+, ifi=1 (11)
L4 0,07 + 60,0072, ifi=234,..
¢ 19 20
ARMA (1, 3)
Ye=C+ QY1+ &+ 0151+ 06 5+ 0363 (12)
c
Ve = m +e+ (P +6)e, + (¢2 + ¢0; + 65)e,
£ P00 + 0,017 + 0,0 e, (13)
i=3
¢ +§:¢ (14)
Ye = 72— i€t—i
-0 4
where
1, i=
{ 5+0, i
Vi = O + PO, + 05, i = (15
'+ 0107 + 0,072 + 60303, i=34,..
ARMA (1, 4)
Ye=CH Py + &+ 0181+ 06 5+ 036 3+ 0,54 (16)
c
Ve =gy teet @ H00e+ (@7 + 00 + 006 + (P74 0107 + 0o + O5)0s
£ @0, + 0,017+ 0,017 + 0,6z, (7)
i=4
S iw (18)
Ye =70 i€t-i
-9 L
( 1, i=0
¢ +6, i=1
Y = %+ 6, + 65, i=2 (19)
L ¢3+01¢2+02¢+63, i=3
P+ 0,07+ 0,077 + 0507 + 0,077, i=4,5,..
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ARMA (1, q)
Ve=C+ @yt e+ 0161+ 06 5+ 036 35+0s6 4+ ..+ 064 (20)
(o)
Ve =ad=g) +e+ (P +0)e g + (¢% + 90, + )€, + (P + 0,07 + 0, + 03)e,_5
+ (p*+ 0,03 + 0,02 + 030 + 0, )y + ...
+ Z@i + 0,07+ 0,072 + 0303+ 0,0+ L+ 0,07 De,; (21)
i=q
c 4 24; (22)
= —— L £ s
yt (1 _ ¢) T~ 1ct—i
where
( 1, i=0
G2+ p0, +0,, i=2
Vi = 0%+ 0,02 + 0, + 05, i=3 (23)
| G+ 0,0° + 0,07 + 03 + 0, =5

\pi + 0171 + 0,012 + 0,073 + 0,67 + .+ 0,67 i=qq+1,..
This establish linear process as a linear combination of white noise variatgsEquation (22) holds ith = 1 for all
positive values of| for the case where constant valweexists.

Invertibility of ARIMA model of various orders
ARIMA (p, 0, 1)

Ve =C+d1Yio1 +P2Ye 2+ P3yis+ o+ ¢p3’t—p +e +0e 4 (24)
c
& = “a+9 + Y =0+ )y + (0% + $160 — D) yep — (0% + 107 — 20 + P3)y,_3

+ (0% + $10° — 0% + $30 — pu)Yr-a— ---+Z(_1)i[9i +$10'7 — 0,077 + 30" — p,0*
i=p

+ ...+(—1)p+1¢p0i_7’]yt_i (25)
c
R ) + ; T Ye—i (26)
where
1, i =
0% + .0 — ¢, i =
m =1 —(0°+¢.10% + $,0 + ¢3), =3 (@27
0% + 0% — 9,02 + P36 — @y, i=4
(D0 + 10771 — 0772 + 3073 — ¢, 00 +
e (=1)PH 007, i=pp+1,..
ARIMA (p, 1, 1)
Ay, = c+ P18y, 1 + G2Ay 2 + P3Ay 3 + .+ ¢pAYt—p +e+0e (28)
c
& = _m+ Ve— O+ ¢+ Dy q + (6% + 01+ ¢1) + b1 — 2lye—s
-6+ 92(1 + ¢1) +0(hy — P2) — ¢ + P3lyes
+ [24 + 031+ 1) +0%(P1 — @) — 0(P2 — P3) + 3 — Pulyr—a + ...
+ Z(_l)i[ei + Hi_l(l + ¢1) + 6i_2(¢1 - ¢2) - 9i_3(¢2 - ¢3) + 6i_4(¢3 - ¢4) +
i=’p
- 91_p¢p]yt—i - (29)
c
& = — (1+6) + ; T Ye—i (30)
Where B
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(1, i=0
-0 +¢,+1), i =
02+ 0(1+ ¢y + Py — Py, i=2
T =4 -[0° + 02(1 + ¢y) + 0(dy — b2) — by + b, i=3 G

L (D" + 607 (A + 1) + 0772(y — ) — 673 (P2 — 3)

+07H (3 — pa)-0"%(s — Ps) + -+ (=1)PFOTP Pl i=p + 1, ..

The expression for ARIMA (p, d, 1) for various vetuofp = 1 holds if@ # —1 for the case where constant term ¢ exists but
holds for all values of if the is no constant term.

Evaluation of parameters of ARIMA (p, d, q) given thatq = 0

ARIMA (P, 0, 0)

YVe=C+G1Ye1 +PVe ot P3Yis+ o+ Gpyipt+ & (32)
Given thatc = 0, we haveA¥ = B. That is

I t=1 t=1 t=1 t=1 | t=1
T T ¢p T
ZJ’t 1Vt-p ZYr 2Vt-p ZJ’t—3Yt P Zyt—pz ZYrJ’t P
t=1 t=1
, ZZ:l VtVt-1
where A ispxp matrix and¥ is a column matrix, that i¥ = ((j)1 ¢, b3 .. ¢p) . B is a column matrix :
ZZ:l VtYt—p

The expression for each parameperi = 1,2, ..., p can thus be determined using Crammer’s rule os&&ehidel method.
But given that # 0, we haved¥ = B, where ¥ = (¢, ¢, ¢, ¢35 - ¢p) -

T T T
/ n Z Ye-1 Z Ye-2 Ve—p \ c T
| = = = |
t=1 t=1 t=1 o _ Zyth—l
T T T T t=1
2 | \®p
Ve-1Yt—p Ye-2Vt-p Ve-3Vt—p YVe-p T
t=1 t=1 t=1 t=1 Z VeVeon
t=1
ARIMA (P, 1, 0)
Ay = c+ ¢y 1 + P8y 5 + P3Ay 3+ ..+ PplAy_p t+ & (33)
Whenc = 0, we haveA®W = B. That is
T T
Z()’t—l - J’t—z)z Z(J’t—1 = Ye-2) V-2 — Ve-3) Z(J’t—1 - J’t—z)(Yt—p - Yt—p—1)
t=1 t=1 t=1 . <¢1>
| T T T i | b,
\Z(Yt—l - Yt—z)(J’t—p - yt—p—l) Z()’t—z - Yt—3)(3’t—p - Yt—p—l) Z(Yt—p - Yt—p—1) /
t=1 t=1 t=1

T

T

Ot = Ye-1) We-1 — Ve-2) \l
t=1
: /l

I
\ O — Yt—l)(J’t—p - yt—p—l)
t=1

Whenc # 0, we have
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T T T
/ Z(}’t—1 = Ye-2) Z(}’t—1 - Yt—z)z Z(J’t—l - Yt—z)(Yt—p - Yt—p—1)\
| = t=1 ..o t=1 [
T T T c
‘ Z(}’t—z = Ye-3) Z(}’t—1 = Ve-2) V-2 — Yi-3) Z(J’t—l = YVe-2) Veep — Ye—p-1) | <¢1>
| t=1 t=1 : S t=1 : | 4,
T T T
\Z(yt—p - yt—p—l) Z(J’t—1 - yt—Z)(yt—p - yt—p—l) Z(yt—p - yt—p—l)z )
t=1

t=1 t=1

/ i(yt = Ve-) Ve-1 = Ye-2) \
| 7 |

T
Z(J’t ~Ye-1) W2 = Ve-3) |
t=1 ] |

. H
kzm - yt—l)(yt—p - yt—p—l))
t=1

For the estimate of parameters in ARIMA (p, O, 03l §p, 1, 0), it is deduced that every teym; in ARIMA (p, 0, 0) is
replaced byy,_; — y;—j_; in ARIMA (p, 1, 0). Also,¥ is p column matrix forr = 0 while ¥ is (p + 1) column matrix for
c#+0.

Behavioural pattern of causality parameters of ARMA (, g) model

Given thatfy > 6y,q > Oy > -+ > O q > 0 for various values of g, the causality parameperof ARMA (1, q) is
skewed to right for positive values ¢f and sinusoidal for negative values ¢pfas shown in Figures 1 — 3 below. The
absolute value of causality parameigy | rises agl increases for positive values ¢fbut smaller the value af, the bigger
the absolute value of causality parameigfor negative values ap. Also, ; increases ag increases as shown in Figure 4
for positive values o$. Similarly, the invertibility parameter; of ARIMA (p, d, 1) whered = 0 and1 is sinosidal and that
|7 l4=1 > |mil4=0 fOr positive values of. Also, |r;|4=o converges faster to zero thgn|,-, for positive values of as can
be seen in Figure 5 below. The parameters of ARNke evaluated for various values of p and ¢ &t 0 using ordinary
least squares method and Crammer’s rule.

5 14 — ARMA (1,1)
o 12 — —ARMA (1,2)
E’ 1\ e ARMA (1,3)
S0l N e ARMA (1,4)
s
S 06
= 04 -
(7]
3 02 -
o
0 T T T T 1 1
0 2 4 6 8 10 12

Figure 1: Figure showing behaviour of causalityapageter i; of ARMA (1, q) for somei given thatp = 0.6, 6, = 0.7,
0, = 0.1, 8; = 0.05 andf, = 0.02.

1.2 -
5 1
é 0.8 —— ARMA (1,1)
e 06 — — ARMA (1,2)
©
[« 3
> 04\ e ARMA (1,3)
g 0.2 4 N\ ARMA (1,4)
S o — . . .
-0.2 Bmei 8 10 12

Figure 2: Figure showing behaviour ¥f of ARMA (1, g) for somei given that$ = —0.6, 8, = 0.7, 8, = 0.1, 85 = 0.05
andg, = 0.02.
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1.2 +
. ARMA (1, 1)
— — ARMA (1, 2)
F 08T N e ARMA (1, 3)
% 06 1 N\ e ARMA (1, 4)
£ 04
2
z 0.2
© 0 . . . .
=]
S .02 ¢ 2 4 6 8 10 12
Some i

Figure 3: Figure showing behaviour¥f of ARMA (1, q) for somei given thatp = 0.2, 8, = 0.7, 6, = 0.1, 85 = 0.05 and
6, = 0.02.

1.5 4

5
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[}
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o

©
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Z

3

=1 1

©

o T 2 4 6 8 10 12
-0.5 Some i

Figure 4: Figure showing behaviour ¥f of ARMA (1, q) for somei given thatd, = 0.7, 8, = 0.1, 6; = 0.05 andg, =
0.02 for some real values df.

_ 15 -
; i« /' \ . acaa- d=0
:é-; 0.5 d=1

E O T il 1
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3 -15
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§ -2

c -2.5 -

- Some i

Figure 5: Graph showing behaviour of invertibiliparameterr; of ARIMA (p, d, 1) whend = 0 andd = 1 given that
0 =06, ¢, =03, ¢, =02, ¢3=0.1, ¢, = 0.05, ¢s = 0.025, ¢ = 0.0125, ¢, = 0.00625, ¢g = 0.003125, ¢po =
0.0015625 and¢,, = 0.00078125.

4. Conclusion
In this paper, ARMA model of various orders wassgrged in causal forms. The result in equation ¢28fines [8]. It was
deduced that behaviour of causality paramgtedepends on positive and negative value$ @nd@. Causality parameter
; is skewed to the right and sinusoidal for positarel negative values @ respectively. Absolute value of causality
parametenp; of ARIMA (1, O, g) increases as the value of q increases for pesitalues ofkp. Similarly, the invertibility
parameterr; of ARIMA (p, d, 1) whered = 0 and1 is sinosidal and thdtr;|;—, > |m;|4-¢ for positive values of. Also,
|m;| =0 converges faster to zero than|,-, for positive values ofl as can be seen in Figure 5 above. The paramdters o
ARIMA were evaluated for various values of p arat ¢ = 0 using ordinary least squares method and Cramméegs
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