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Abstract 
 
Cryptography is a mathematical technique that plays an important role in 

information security techniques for addressing authentication, interactive proofs, data 
origination, sender/receiver identity, non-repudiation, secure computation, data integrity 
and confidentiality, message integrity checking and digital signatures.  In public key 
cryptography, the security of private keys is very importance, for if ever compromised, it 
can be used to decrypt secret messages. Conventional methods that use textual 
passwords, graphical passwords and single modal biometric systems that are used to 
encryption and protect private keys do not provide adequate security due to uses 
password practices and the very low entropy of chosen passwords. To improve the 
security of private keys, we propose a novel multifactor key generation algorithm that 
dynamically regenerate the private key of a user with a significant high overhead that 
exceeds what an identity attacker can contend with, that meet the current security 
requirements of any public key algorithm. The proposed encryption algorithm proved to 
be more secured at protecting private keys than using textual password-based 
techniques.  

 

 
1.0 Introduction 
 

The goal of cryptography and encryption system is to embed a secret with sensitive data in a way that can only be decrypted 
with the right private key from the legitimate user.  Because of the large size of a cryptographically strong key, it is not 
possible for a user to remember the private key and enter each time it is required for a cryptographic application. Instead, the 
private key is usually stored encrypted with a user chosen password. Under usability studies however, findings from earlier 
studies on users’ textual password selection, revealed that users choose poor or weak textual passwords [1, 2]. Using a weak 
password transforms the cryptographic algorithm into a weak one.  
From research studies it is established that a typical password should be 8-bit ASCII characters (256) or 64 bits, this 
generates a key length of size 648 = 2.8x1014 [3, 4].  But even this is not as good as it might appear because the 128 possible 
combinations of 8-bit per character are not equally likely; users usually do not use control characters, non-alphanumeric 
characters or password with high entropy. For instance, a textual password of length n from a character set of size c, will have 
a key length of size kp = cn [5]. Users usually utilize passwords that are 3 to 6 characters long [6].  By increasing the length of 
the password to 8 digits, a key length of 108 = 100000000 is obtained, whereas keeping the same length but increasing the 
allowed input characters to include all lowercase alphabetic characters and digits yields a key length of (26+10)8 = 
2821109907456, which is larger.   
To enhance the security of cryptographic keys, other approaches exist which includes the use of biometric and graphical 
passwords.  However, a drawback of biometric-based password and graphical password is the length of the keys that can be 
generated.  Monrose et al [7] proposed a cryptographic key from voice characteristics of a user, which generated a 46-bit key 
length generated from a roughly two second spoken password. Feng and Wah [8] posited the idea of using on-line 
handwritten signatures for private key generation which can be used to generate a 160-bit key.  Fabian et al [9] propose the 
use of voice characteristics for generating a cryptographic key with a key size of 46-bit key.  Hao and Chan [10] proposed an 
on-line handwritten signature for private key generation which efficiently generates a 160-bit key. Uludag et al [11] convert 
fingerprint templates (minutiae data) into point lists in 2D space, which implicitly hide a given secret key of 128-bit length. 
Graphical password generated keys is sometimes lower [12] than that of textual passwords.  For example [13] yield 6561 ≈ 
213 passwords.  Déjà Vu [5, 14] model yields a key size of N!/K!(N-K)! (Where N denotes total set of images and K subset 
for authentication) which yields a 53130 ≈216 key size with a search time less than 0.5 seconds [15].  Face model [16] has a  
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key size of 94 = 6.5 x 103.  Man et al [17] password generated a key size of 4005 

≈ 1.0x1013, which takes a little more than 
40.5 days search time to compromise.  However, [18] generated a key size of ����, where N = 80 and N = 30, which yields a 
key size of 273, with a search time more than 570, 776 years [15].    
All the aforementioned techniques have a limited key length, with 273 bits being the largest key produced. However, in public 
key algorithms higher key lengths that exceed 273 bits are required to keep pace with current computational power.  
 

2.0 Proposed Model  
Using the concept of textual passwords, graphical passwords and fingerprint biometric models, we developed a multifactor 
key generation algorithm (MKGA) and concentrated mainly on improving the different factors performance. Regenerating 
private keys involves a registration and key regeneration phase.   
 
2.1 Registration Phase 
The fingerprint image registration is carried out using a feature extractor and encryption software driver designed by [19], 
which uses the orientation field of the ridge map of the fingerprint as a biometric feature denoted as Or. The system interacts 
with FingerAuth, an Add-on Extension for Mozilla Firefox to derive minataeu data, Mui from the registered finger using the 
software driver. We denote a legal user by Us, user’s full name by Fullname, the selected graphical password codes by Gpas, 
the existing private key by FINkey, user’s fingerprint by Fin, the system by Sys, database by Dbas, displayed fingerprint 
window by FINWIN, finger by F and fingerprint sensor device by Io. These are the steps in the registration process:  

(i) Us enters full name Fullname and not less than ten diagonally selected graphical image codes Gpas and submits 
to Sys. 

(ii)  Sys then 
a. stores Fullname and Gpas in the database Dbas. 
b. displays the fingerprint windows FINWIN to retrieve user’s fingerptint data via an input device vector Io. 

(iii)   Us presents finger F to the input vector Io  
(iv) Sys then 

a. interacts with FingerAuth, an Add-on Extension for Mozilla Firefox to derive Fin  
b. acquire FINkey using the algorithm proposed in [19]. 
c. compute Mui and Or from Fin, where:  

Or = { r: 1 ≤ r≤ 180 degrees and 1 ≤ r ≤ 180}.  
d. store Mui in DbasMui. 

e. for each r � Or, define rs, where W = r = 180 and form set Pi (1≤i≤41) consisting of seven successive 
rs.  

rs = { r, r ± q}1 ≤ q ≤ b, 1 ≤ v ≤ (2b + 1)   (1) 
where b is the system parameter defining the number of shadow angles, which accommodate Sys tolerance to errors. 

f. define the set T containing the Ti segments of FINkey i.e. T= {T1, T2,..........,T41}, where every consecutive 
Ti � T is taken as a secret and an (r-d) secret sharing system where r is the minimum number of shares 
required to retrieve the secret and d is the total number of shares. For our experiment, r= 2 and d=5 x 
(2b+1).  

g. compute random, collision free hashes Collfr using the following equation: 

Hashcom = Hash1 ( rs + Hash1(Gpas + z))   (2) 
Collfr = fo(Hashcom, u, §)     (3) 
 where Hashcom generates 160-bit hashes (see equation 2), Hash1 is a function that uses the SHA-1 algorithm to derive 
160-bit random unique hashes, z  is a public value selected arbitrary for every W, Collfr maps the 160-bit hashes generated 
into smaller collision free hashes, which are used to index the secret shares. u defines the maximum range of Collfr and § is a 
random seed value chosen for every W to forestall collision in the values of Collfr. 

h. For each FINkey segment, store the secret shares generated in step (e) above in Dbasec using the Collfr 
equivalent index pointer.  Thus for d shares of T1, the first 5 x (2b+1) Collfr values will be used where, 1 ≤ 
W ≤ 5 and 1 ≤ v ≤ (2b + 1). 

i. Encrypt u values,  
j. Encrypt DbasMui and Dbasec with Gpas to derive EDbasMui and EDbasec respectively and store. 

 
2.2 Key Regeneration Phase 

Only legitimate users can regenerate private keys.  All ten fingers of a user can be regenerated as a private key (i.e FINkey1, 
... , FINkey10) and can be used with the public key for authentication. The steps in key regeneration are as follows: 

(i) Us enters Fullname and not less than ten diagonally selected graphical image codes Gpas to Sys.  
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(ii)  Us submits Fullname and Gpas to Sys by clicking the ‘Register’ command button. 
(iii)      Sys then 

a. stores Fullname and Gpas in Dbas. 
b. displays the fingerprint windows FINWIN to retrieve user’s fingerptint data via an input device vector Io. 

(iv)  Us presents finger F to the input vector Io  
(v) Sys then 

a. interacts with FingerAuth, an Add-on Extension for Mozilla Firefox to derive Fin and Mui using the 
algorithm proposed in [19] to acquire FINkey. 

b. reads from the files EDbasMui and EDbasec 
k. decrypt EDbasMui with Gpas  
l. compute Or from Fin, where:  

Og = { r: 1 ≤ r ≤ 180 degrees and 1 ≤ m ≤ 180}.  

m. for each r  Or, define gs, where W = r = 180 and form groups Pi (1≤i≤36) consisting of five successive 
ϴrs. 

 gs = { r - 1, r, r + 1}, 1 ≤ x ≤ 3    (4) 

n. calculate Hashreg = Hash1 ( s + Hash1(Gpas + z))   (5) 
Collreg = f0 (HashregN, u, §)     (6) 

o. compute the segments of FINkey using polynomial interpolation. Each                         segment secret is 

considered valid if after calculating three secrets, any two secrets calculated within gs matches and 
produces the same secret value.  For reg = val, this is expressed as:  

HashregN  HashvalN  

CollregN  CollvalN   
The regenerated private key of Us is then formed by the concatenation of the segments T1 to T36 and can be used with the 
public key for authentication.  
 
3.0 Security Analysis 
Design structure of the MKGA is a novel one because it incorporates the unique characteristics of graphical image codes and 
fingerprint biometric. When compared with the conventional alphanumeric password model, MKGA offers more security in 
an on-line attack because to compromise the system the attacker has to generate the legitimate user’s fullname, graphical 
image codes and fingerprint and to dynamically regenerate the private key. In an off-line attack, it is assumed that the 
attacker captures the login registry files and then uses them in an off-line effort to regenerate the private key.  
In an off-line attack, we assume the attacker has been able to access the files EDbasMui and EDbasec from the registry files 
and have by some means decrypted the files to retrieve the files DbasMui and Dbasec.  However, because DbasMui contains 
only the Mui of Us, no information of FINkey will be revealed. Also if the attacker decides to exploit Dbasec for an offline 
attack and recreate the private key, the attacker has to make a choice on five authentic shares from all the shares in Dbasec to 
create a distinct segment of the private key. And to check the secret authenticity, the attacker needs a minimum of seven 
authentic shares. To generate the right key, the attacker needs to execute 41! Permutations and derive 3.3 x 1049 number of 
iterations and in each iteration concatenate the secrets in the exact order.  
A brute force attack of this nature is very time consuming and the search will be inexhaustible. For instance, an analysis of 
the number of keys possible with various textual password lengths using the best character set constraints, which is 8-bit 
ASCII characters (256) (contrasting lowercase letters (26), lowercase letters/digits (36), all alphanumeric characters (62), 
printable characters (95), 7-bit ASCII characters (128)) revealed that at 1 million keys/second, the amount of time to search 
all possible keys of a six character password, yielded 2.8x1014 number of iterations at 8.9 years, seven character password 
yielded 7.2x1016 number of iterations at 2,283 years, eight character password yielded 1.8x1019 number of iterations at 
570,776 years and even a twenty character password yielded 1.4x1048 number of iterations at an almost inexhaustible time 
frame [15]. This is a significant high overhead, but is still not comparable with what the attacker has to contend with for the 
derived key size of 3.3 x 1049. 
 
4.0 Testing Framework 
In the system performance testing experiment, we employed a modified testing methodology similar to that proposed by 
Phillips, et al [20, 21]. The framework which was extended to accommodate a multifactor authentication system involves the 
following seven steps: 

a. Factoid Selection: Collect two sample sets from all authentication factors (i.e. in this case, graphical password via 
alphanumeric codes and fingerprint biometric codes) to get a target set (T) and a query set (Q). T contains the set of  
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b. credentials known to the system while Q contains the set of credentials that are to be compared against the target 
set. Separate instances of graphical password via alphanumeric codes and fingerprint biometric codes are used for 
users in both sets. For practical tests the intersection of any of these two sets should not be null, instead the 
intersection of any of these two sets contains the users to be found in the database.  

c. Score Allocation: For each pair of query and target sets from all authentication factors obtain a similarity score 
matrix whose size is query set size by target set size. The score for graphical passwords and fingerprint biometric 
codes is a similarity score. 

d. Score Extraction: Gallery and probe subsets are extracted from the target/query similarity matrix, respectively, to 
perform “virtual” experiments on a subset of the population, where a gallery is any arbitrary subset of the target set 
and the probe is any arbitrary subset of the query set. 

e. Steps 1-3 are repeated for each factor. 
f. Data Operation: The similarity matrices from step 2 is assemble and align; this includes converting data to a 

common format, forming subsets to obtain matrices of the same size, and mating each data to create real or virtual 
subjects. The result is a set of similarity matrices of equal size representing match-score data for mated subjects in a 
common format convenient for processing. 

g. Score Normalization: Normalize the assembled similarity matrices to a common number range without reducing the 
dimensionality of the data. 

h. Score Fusion: Fuse the set of normalized similarity matrices into a single fusion similarity matrix. A fusion 
function, f(x1,…xn), defines a mapping from n-space, where each factor represents one of the n dimensions, into a 
single fused dimension. A threshold divides this range into an accept and reject part. Operationally, the threshold or 
boundary is derived from an estimate of the Receiver Operating Characteristic (ROC) curve developed in step 8. 

i. Performance Statistics: Performance Statistics for verification are computed from the genuine and imposter scores. 
Genuine scores are those that result from comparing elements in the target and query sets of the same subject. 
Imposter scores are those resulting from comparisons of different subjects. Use each fusion score as a threshold and 
compute the false-accept rate (FAR) and false-reject rate (FRR) by selecting those imposter scores and genuine 
scores, respectively, on the wrong side of this threshold and divide by the total number of scores used in the test. A 
mapping table of the threshold values and the corresponding error rates (FAR and FRR) are stored. The 
complement of the FRR (1 – FRR) is the genuine accept-rate (GAR). The GAR and the FAR are plotted against 
each other to yield a ROC curve, a common system performance measure. In practice, one chooses a desired 
operational point on the ROC curve and uses the FAR of that point to determine the corresponding threshold from 
the mapping table. 

 
5.0 Experimental Results  
 
Based on steps a-e, the database consisted of 52 non-habituated users. For the graphical password, the image set comprised of 
15 x 15 single unique images.  To create a graphical password, a minimum of 6 images and a maximum of 10 images were 
selected. Users choose any of the choices of images upon their preference.  For the fingerprint registration, the SeCugen 
scanner was used and each finger of choice needs to be left in the fingerprint sensor device for the system to scan the finger 
four times in order for the registration to be established.   
In the first login phase, the users were asked to repeat the operation three subsequent times at a time interval of 1 week for the 
first two logins and 2 weeks for the second two logins under supervised conditions. The initial login graphical password 
scores was used as the target set known to the system while the subsequent login scores became the query set of subjects to 
be compared against the target set.  Using the third login scores as the application query scores, we obtained a match-score. 
From the fingerprints scanned, each fingerprint from the test set (T) is tested with the same fingerprint from the target set (Q) 
(three different capture prints of the same finger in which any can be stored in the database) and used to generate scores. The 
system matches between two fingerprints and computes the Euclidean Distance.  From these, 13 gallery and probe subsets 
were selected respectively to perform the ‘virtual experimentations.   
To normalize scores, the min-max score normalization technique was utilized because it is suitable when the bounds of the 
scores produced are known. The assembled similarity matrices scores were normalize to a common number range without 
reducing the dimensionality of the data. The min-max normalized score for the test score sik is given by 
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ssij denote the j th matching score output by the i th factor, where i = 1, 2, … , f and  j = 1, 2, …, g (f is the number of factors and 
g is the number of scores available in the set).  For the graphical password similarity scores, normalizing the scores derive the 
same set of initial scores.  While for the fingerprint scores after normalizing the scores, next the scores are transformed into 
similarity scores by subtracting the normalized score from 1.  
To fuse the set of normalized similarity matrices into a single fusion similarity matrix, a fusion function, f(x1,… xn), defined 
mapping from n-space, where each factor represented one of the n dimensions to a single fused dimension.  The simple sum 
rule, which generally performs well over the range of normalization technique, was applied at step g [22]. 
The performance statistics for verification revealed a very high genuine acceptance rate for legitimate users and illegitimate 
users were rejected.    

 

 
Figure 2: Genuine Acceptance Rate 

 
Figure 2 shows the results obtained using the genuine fingerprint similarity score for different shadow angles.  This resulted 
in a 100% genuine acceptance rate, which is the complement of the FRR (1 – FRR).  And as the genuine acceptance rate 
increases, the false acceptance rate reduces. Users’ credentials were never the same because MKGA accurately distinguishes 
them via the random seed value, unique characteristics of graphical image codes and fingerprint biometric. This facilitates the 
regeneration of an invariable key value for a legitimate user.  
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