
475

Journal of the Nigerian Association of Mathematical Physics
Volume 19 (November, 2011), pp 475 – 482

© J. of NAMP
Summary Of Branch And Bound Algorithm For BIP (0,1) Using LP Relaxation

1 Abdullahi, N and 2 Sani, B

1Department of Mathematics and Computer Science,

 NDA, Kaduna
2Department of Mathematics,

 Ahmadu Bello University Zaria

Abstract

In this paper we contemplate the Binary integer programming problems and

presents a summary of the techniques of finding an optimal solution, using the Branch-
and-Bound algorithm highlighting some critical features and new trend in published
articles not yet commonly found in most text books. A generic algorithm is presented
and illustrated by solving a knapsack problem.

Keywords: Linear programming, Binary Integer programming, Relaxation, Branch and Bound, Variable selection,
Partitioning, fathoming, Depth-first search, Fixing Variable.

1.0 Introduction

In this paper we are dealing with a special type of Integer programming (IP) problem, the class of (0-1) integer program
called Binary Integer Program (BIP). An IP problem is a Linear programming problem (LPP), in which all of the decision
variables are restricted to take on only integer values. If some (not all) of the variables are restricted to take integral values
then the optimization problem is called Mixed integer program (MIP).The situation where the variables are restricted to take
only 0-1 values is called BIP. These are problems of the following types;

�������� 	
�
 ��
���� �� �� �
 (1)
 �� � ��� , � � 1, … . . �

where � � � !�,
 � � , 	 � ��, � � �� �"# $� �%%��� " � � �"# � � &0,1(

Among the most successful methods of solving (1) currently are linear programming (LP) based on branch-and-bound (B&B)
algorithm, which is an enumerative technique. Most commercial LP solvers are based on this method. Among the classical
B&B based methods for solving general IPP and its variants including (1) are the Branch-and-cut (B&C), Branch-and Price
(B&P) and B&C with interior point method [1].
 B&C method consist of a cutting plane method embedded within B&B algorithm, while B&P is a generalization of
LP based B&B specifically designed to handle IP formulations that contain a huge number of variables. It is a combination of
B&B with column generation. B&C with interior point method is the construction of B&C algorithm of the usual type, but
then uses interior point method to solve the LP relaxations [11].
 As we will see below, B&B algorithms leave two choices: how to split a problem (branching) and which (sub)
problem to select next. In this paper we focus on the B&B algorithm for the class of 0-1 IPP and give a summary of the major
steps with a numerical example and some recent trend published in the literature.
 In section 2 we review the literature on the subject. In section 3 we present B&B subroutines for 0-1 IP, a numerical
example is given, and a generic B&B algorithm for 0-1 IP is presented.

Corresponding authors: E-mail: nasirualbani@yahoo.co.uk, dbsani@yahoo.co.uk, Tel. +2348035587641(Abdullahi)

 Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

476

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

2. Branch and Bound Review

The B&B technique is currently the most widely used method for solving IP and MIP problems. The method consists of four
basic steps; initialization, branching, bounding, and fathoming. In the initialization step, the associated LP problem is solved.
If the solution obtained is integer, then the IP problem has been solved; otherwise the solution forms what is called the
“starting node.” The branching step partitions this set of solutions into several subsets. Partitioning is a recursive process. The
bounding step obtains a bound for each new subset; this bound is actually the value of the objective function of the LP
problem of a subset. In the fathoming step, a decision is made at the end of each branch (node) either to exclude some subsets
from further consideration (fathom them) or to continue partitioning. The tree enumeration procedure ends when all possible
branches or subsets are fathomed.
The B&B concept was introduced by [8]. Later [4] modified the Land and Doig algorithm by using inequalities instead of
equalities for the branching step at each unfathomed node. Mitten [10] gives a general description of B&B approaches. The
special technique for solving 0-1 IP problem has been the Implicit Enumeration algorithm due to [3].

2.1 Implicit Enumeration

Implicit enumeration algorithms are motivated by the fact that the integer solution space of combinatorial problems consists
of a finite number of points. Accordingly, the approach seeks to examine explicitly only some solutions and implicitly rule
out the rest of the solutions as being infeasible or sub-optimal. It also uses a tree enumeration procedure and implements the
basic concept of branching, bounding, and fathoming of B&B methods. The most useful type of implicit enumeration
technique is applied to the special class of 0-1 (binary) integer problems.
Balas was the first to propose the use of implicit enumeration to solve binary problems. The arithmetic operations of his
“additive algorithm” involve only addition and subtraction. Glover [6, 7] developed a “surrogate constraint” that combines all
or some of the original constraints of the problem without eliminating any of the original feasible integer points. Thus, it
enforces restrictions upon the optimal solution that cannot be determined from any of the individual constraints. Geoffrion [5]
used an imbedded LP to compute surrogate constraints slightly different from those developed by Glover. His approach
synthesizes Balasian implicit enumeration with the approach typified by [8].
Computational experience indicates that the solution time of binary implicit enumeration varies exponentially with the
number of variables. Moreover, the prospect of generalizing the 0-1 additive approach to all-integer problems is not
promising.

2.2 A general B&B algorithm for IPP.

 A formal statement of a general B&B algorithm is presented below. We use the following notation: Let S denote the
constraint set of (1) i.e � � &� � ��

� � &0,1(: �� �
(and SR the corresponding continuous relaxation set of (1) i.e �* �
&� � ��: �� �
(, where S+ �* and 	,

- � 	*
- .� � �. Clearly solving a problem relaxation (ie dropping the integrality

restriction) provides an upper bound on the objective value of the underlying problem. Perhaps the most common relaxation
of (1) is the LP relaxation formed by dropping the integer restrictions and enforcing appropriate bound condition on the
variables. There are other forms of relaxations (like Lagrangean relaxation etc) for details see [1].
 The notation L is used to denote the list of active subproblems &/01(where IP0 = IP denotes the original IP. The
notation 234 denote an upper bound on the optimal objective value of /01, and 2ip denotes the incumbent objective value.(i.e
the objective value corresponding to the current best integral feasible solution to IPP).

2.2.1 General B&B algorithm
1 (Initialization): Set 5 � &/06(, �70 = + ∞ and 2ip= -∞
2 (Termination): If L = 8, then the solution �9 exists (i.e 2ip= -∞) then IP is infeasible.
3 (Problem selection and relaxation): Select and delete a problem IPi. Let �1

* denote the optimal objective value of the
relaxation, and let �1* be an optimal solution if one exists.(Thus �1

* � �-�1* , �: �1
* � -∞).

4 (fathoming and Pruning):
(a) If �1

* � 2ip go to step 2

(b) If �1
* ; 2ip and �1* is integral feasible, update 2ip = �1

* .Delete from L all problems with 21 � 2ip . Go to step 2.

5 (Partitioning): Let &�1�(�<=
�<> be a partition of the constraint set Si of problem IPi . Add problems &/01�(�<=

�<> to L,

where /01� is IPi with feasible region restricted to �1� and �7ij = �1
* for j = 1,…..,k. Go to step 2. [13].

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

477

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

The actual implementation of a B&B algorithm is typically viewed as a tree search, where the problem at the root node of the
tree is the original IP. The tree is constructed in an iterative fashion with new nodes formed by branching on an existing node
for which the optimal solution of the relaxation is fractional.
 To simplify the notation a bit, let node � in the search tree be denoted by ?1 with the root node given by ?6 For a
path 01 in the tree connecting ?6 to ?1, let Si be the intersection of S with the set of points satisfying the constraints given by
the edges of 01. If 01 has k+1 nodes ordered as

?6 � ?1@6A, ?1@=A, … … … ?1@>B=A,?1@>A � ?1
Then � � �1@6A C �1@=A C D C �1@>A � �1
Now suppose that the enumeration is at node � in the tree. The problem considered at ?1 is

 ZFG � maxKcx M x � �1N (2)
An upper bound 21 O 2ip may be calculated by considering the relaxation of (2)

 21 � 21

* � ���K	-�: � � �*
1 C �1N (3)

which we call LPi. Note that an upper bound at a node is valid for any of its Successor; i.e if ?> is a successor of ?1, then
�*

1 C �1 C �>. For the IP we have:

 �1 � K�: �1� �
1, � O 0 �"# �"��P�:N (4)

 �*
1 � K�: �1� �
1, � O 0 N (5)

So 21 is calculated by solving the corresponding LP.

2.2.2 Partition

 Suppose that the LP (3) is solved at vi and the solution �1* is not all integer; in particular some basic variables

�Q� � R
�S T U�, 0 V U� V 1 , then a partition of �1 is

 W�1 X K�: �Q� � R
�SN, �1 X K�: �Q� O Y
�ZN[(6)

Where \]^ denotes the smallest integer greater than or equal to] , and _]` denotes the largest integer less than or equal to] .
Now if we assume S is bounded and

let

�1 � K�: �� �
, 0 � a�
1 � �� � b�

1 � �� , �� �"��P�:, � � 1, . . , "N (7)

At node ?1, where a�

1 and b�
1 are integers determined from (5), and a�

6 � 0 and b�
6 � ��.

To perform the computations, a branching strategy is needed at step 4. Lee and Mitchel [9] presents some branching rules
found in the literature. While [2] revisits the branching rules in respect of Constraint Integer Programming applicable to both
MIP and 0-1 IP. A variable selection strategy is needed in step 5. Also [9] provide some useful strategies commonly use in
practice.

3 B&B Subroutines for 0-1 IP

 Although most of the steps of a B&B algorithm are general in that they are appropriate for a variety of problem
classes, several computational procedures are problem dependent. The five routines below are used to guide the search for the
optimum and to extract information that can be used to reduce the size of the B&B tree.

Bound: This procedure examine the relaxed problem at a particular node and tries to establish a
 bound on the optimum. It has two possible outcomes:

(i) An indication that there is no feasible solution in the set of integer solutions represented by the node, or
(ii) A value �7i= �cQ, an upper bound on the objective function for all solutions at node �, and its descendent nodes.

Approximate: This procedure attempts to find a feasible integer solution from the solution of the relaxed problem. If one is
found it will have an objective value, call it �i = �dQ ,that is a lower bound on the optimum for a maximization problem.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

478

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

Variable Fixing: This procedure performs logical tests on the solution found at node. The goal is to determine if any of the
free binary variables are necessarily 0 or 1 in an optimal integer solution at the current node or at its descendants, or whether
they must be set to 0 or 1 to assure feasibility as the computations progress.
Branch: A procedure aimed at selecting one of the free variables for separation. Also decided is the first direction (0 or 1) to
explore.
Backtrack: This is primarily a bookkeeping procedure that determines which node to explore next when the current node is
fathomed. It is designed to systematically enumerate all remaining live nodes of the B&B tree while assuring that the optimal
solution to the original IP is not overlooked.
Example: 0-1 knapsack problem

�������� 2 � 4�= T 9�g T 6�i

%�
��� �� 5�= T 8�g T 6�i � 12

 �� � 0 �: 1, � � 1,2,3
The B&B tree of this example is shown in fig. 1. The order in which the variables appear is determined by the “bang for
buck” (�� ��⁄ , objective coefficient/constraint coefficient) rule. The one with the highest ratio is the best item (variable) to
place in the knapsack. This is designed to provide tight upper bounds and increase the likelihood of fathoming (see Table 1).
It also speeds convergence. [12].

 Table 1. Bang for buck table

Variable, j 1 2 3
Benefit/cost, Cj/aj 0.8 1.25 1.0

3.1 Variable Fixing and Data structure for 0-1 IP

Given an optimal LP solution to a maximization problem, the reduced costs �j, are nonnegative for all non basic variables ��
at their lower bound (typically zero), and non positive for all non basic variables at their upper bound. This leads to the
following result which is valid for any MIP.

 Proposition: Let � � �� be the decision variables in an IP such that �� O 0 . �, �"# o�� �*

1 �"# �1p be the objective
values of the LP relaxation and incumbent, respectively. If �� is non basic at its lower bound (zero) in the solution to the LP
relaxation, and �*

1 q �7� � �1p , then there exists an optimal solution to the integer program with �� at its lower bound.
Similarly, if �� is non basic at its upper bound in the solution to the LP relaxation, and �*

1 T �7� � �1p , then there exists an
optimal solution to the integer program with �� at its upper bound. [14].

 Branching to the left first (�� � 1A: For each node k, there is a path 0> leading to it from node 0 which corresponds to
an assignment of binary values to a subset of the variables. Such an assignment is called a partial solution. We denote the

index set of assigned variables by r> + s � &1, … . , "(and let

�>
� � K�: � � r> �"# �� � 1N

�>

B � K�: � � r> �"# �� � 0N

�>
6 � &�: � t r> (

 Branching to the left first (�� � 1A: For each node k, there is a path 0> leading to it from node 0 which corresponds to an
assignment of binary values to a subset of the variables. Such an assignment is called a partial solution. We denote the index

set of assigned variables by r> + s � &1, … . , "(and let

�>
� � K�: � � r> �"# �� � 1N

�>

B � K�: � � r> �"# �� � 0N

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

479

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

 +3 -3

1

3
2

5
8

6 7

0

4

21
* � 12.2 21

* � 12.75

21
* � 11.87 21

*

� 9

Fathom

21
* � 4

All integer
Feasible

 21
* � 10

 �Q � @1,0,1A

21
* � 13

Fathom Infeasible

+2

-2

+2 -2

+1
-1

0

1

2

3

Infeasible

Figure 1. Search tree for knapsack problem

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

480

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

 A completion of r> is an assignment of binary variables to the free variables specified by the index set �>

6 . The B&B
process is guided by the following rules:

1. If a free variable remains at node k (�>
6 v 8A choose a separation variable @� � �>

6A and branch to the next level to create
node k+1.

2. If no free variables remain @�>
6 � 8A , evaluate the solution and backtrack to the highest level that contains a node

whose right branch has not been explored; generate the node along this branch one level down.
 Depth-first Search:
 To implement this process we need a data structure that gives the status of the tree at any point. The vector 0> will be
used for this purpose. For node k at level o of the tree, 0> is defined as follows:

1. The length of the vector is o, and is written 0> � @�=, �g, … . . , �wA.
2. The component �1 is the separation variable at level i.
3. The sign of �1 indicates the value of the separation variable on the current path. A negative sign indicates that the variable is

set to zero, and a positive sign (or no sign) indicates it is set to 1.
4. The component �1 can be underlined or not. If it is underlined, the alternative node at level i has already been explored. If it is

not underlined, the alternative has yet to be explored.
5. The variables not mentioned in Pk are the free variables.

Backtracking: Underline the rightmost non underlined entry in 0>, change its sign, and erase all entries to its right. If all
entries are underlined the enumeration is complete and the incumbent is the solution.

3.2 Generic B&B Algorithm for 0-1 IP

 In the following algorithm, k is used as a counter for identifying nodes, o is the level in the tree, and " is the number
of integer variables. The o-dimensional vector, 0>, identifies the path from the root to node k, and �>

�, �>
B, �"# �>

6 indicate the
current status of the variables. Vectors �> �"# �Q refer to a feasible solution at node k and the incumbent, respectively.
(Wolsey 1998).
Initialization: Create node 0 at level 0. Let x � 0, o � 0 �"# 0y � 8.
 Perform the approximate procedure in an attempt to find a feasible solution. If a feasible solution is found, let �Q be the
vector of integer variables with objective value �Q otherwise, let �Q � q�
Update: If o � " , an integer solution has been generated. Let �> be the the solution vector defined by Pk , if �> is feasible,
compare the objective value �> with �Q . If �> ; �Q , ��� �Q z �> �"# �Q z �>
 whether or not �> is feasible go to Backtrack .If o V ", continue with Variable Fixing.
Variable Fixing: Use logical and other tests to determine if a free variable �� should be set to 1 or 0, where � � �>

6 . Suppose
variable �{ should be set to 1. Perform the following:
 o z o T 1, x z x T 1.
Add +s to the current path vector to get Pk. Create node k with decision +s.
Alternatively, suppose variable xs should be set to 0. Perform the following
 o z o T 1, x z x T 1
 Add –s to the current path vector to get 0>. Create node k with decision –s.
If any changes are made repeat this step; otherwise, continue with Bound.
Bound: Solved the relaxed problem at node k. If the result shows no feasible solution, fathom the node and go backtrack.
 If the procedure returns �cQ

> , ��� �cQ
> z R�cQ

> S ,and compare this value to the incumbent.
 If �cQ

> � �Q, fathom the node and go to Backtrack; otherwise continue with Approximate.
Approximate: Attempt to find a feasible solution in the set of solutions for node k. If a feasible solution is found, call it �>
and let the objective value be �> .
 If �> O �Q, put �Q z �> �"# �Q z �>.
 If �cQ

> � �Q, fathom the node and go to Backtrack; otherwise, continue with Branch.
Branch: Choose a separation variable xs, such that % � �>

6 , and a direction of exploration.
 Put x z x T 1, o z o T 1 and create node k at level of the tree.
 If xs is to be set to 1, add +s to the current path vector to get Pk.
 If xs is to be set to 0, add –s to the current path vector to get Pk.
 Go to Update.
Backtrack: In the vector Pk , find the element furthest to the right that is not underlined. If all elements are underlined, stop,
�Q is the optimum.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

481

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

Otherwise, let this element be �1. Backtrack by doing the following:
 Let the level be o � �.
 Delete all elements of Pk to the right of �1.
 Put �1 z q�1 (i.e change the sign of �1).
 Now underline �1 to get Pk+1.
 Put x z x T 1 and create node k.
Go to Update.
 Table 2 below shows the results of the algorithm when applied to the knapsack example given in (Fig.1), we assume
that no variable fixing or Approximate procedures were used. During the bound step, the LP relaxation was solved using the
“bang for buck” scheme. At each node, the free variable with the largest benefit/cost ratio was chosen for separation. And
always set equal to one.
 Table 2. B&B results for knapsack example

Node,k Level,o 0> �cQ �Q �Q s Action

0 0 8 13 -∞ - 3 Set �i � 1
1 1 (+3) 12 -∞ - 2 Set �g � 1
2 2 (+3,+2) Infeasible -∞ - - Backtrack
3 2 (+3,q2) 10 10 (1,0,1) - Feasible

Backtrack
4 1 (q3) 12 10 (1,0,1) 1 Set �= � 1
5 2 (q3 ,+1) 11 10 (1,0,1) 2 Set �g � 1
6 3 (q3 ,+1,+2) Infeasible 10 (1,0,1) - Backtrack
7 3 (q3 ,+1, q2) 4 10 (1,0,1) - Fathom

Backtrack
8 2 (q3 , q1) 9 10 (1,0,1) - Fathom

Backtrack
Finish

 Table 2 also gives summary of the computations involve in the algorithm; for instance, we obtain node 4, by putting
(x z x T 1, o z o T 1A at that level, where x z 3 T 1, o z 0 T 1, (i.e x z 4, o z 1). We obtain 0>= q3; since
�{ � �g �%
��" |���# �� ��:�, therefore we add q2 to the current path vector to get 0>; with objective function value
�Q � 10 �"# �"��P�: ?�:��
o�%, �Q � @1,0,1A.

Conclusion
 This paper gives an over view and demonstrate the problem solving technique of one of the seemingly trivial or
simple problem, but actually very tricky and difficult to solve; the knapsack problem; defined as a Binary Integer
Programming problem. The Generic algorithm presented will go a long way in helping researchers and students to generalize
the B&B approach taken for 0-1 IPs when depth-first search is used; especially for a general branching with integer variables
other than 0-1.

 References

[1] Abdullahi,.N.(2006),”Adopting an MIP model in military training: a case study of the US Army “Training Mix

Model” in the Nigerian Defence Academy, Kaduna” MSc Thesis; Mathematics Department, Ahmadu Bello University,
Zaria.

[2] Achterberg,T., Koch,T. and Martin,A.(2004) “Branching Rules Revisited” Zuse Institute Berlin,(ZIB)-Report 04-13.

[3] Balas,E.(1965) “An Additive Algorithm for Solving Linear Programs with Zero-One Variables”, Operations Research,

13,.(4), 517-546.

[4] Dakin, R.J.(1965) “A Tree Search Algorithm for MIP Problems”, Computer journal, 8, (3), 250-255.

[5] Geoffrion, A.M.(1969)”An Improved Implicit Enumeration Approach for IP” Operations Research”,17,(3),437-454.

[6] Glover,F.(1965) “A multi Phase-Dual Algorithm for the Zero-One IPP”, Operations Research,13, (6), 879-919.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

482

Summary Of Branch And Bound Algorithm For BIP (0,1)… Abdullahi and Sani J of NAMP

[7] Glover,F.(1968) “Surrogate Constraints” Operations Research, 16, (4),741-749.

[8] Land, A.H. and Doig, A.G.(1960) “An automatic method for solving Discrete Programming Problems”, Econometrica,

28, (3), 497-520.

[9] Lee,E.K1. and Mitchel,J.E2,(1998) “Branch and Bound Methods for Integer Programming” Notes: 1Industrial and

system Engineering, Georgia Institute of Technology, Atlanta, USA; 2Mathematical Sciences, Rensselaer
polytechnic Institute, Troy NY USA. AMS 1991 Subject classification:90C10 ,49M35, 90C11, 90C06.

[10] Mitten,L.G.(1970) “Branch and Bound Methods: General Formulation and Properties”, Operations Research, 18,

(1), 24-34.

[11] Mitchel,J.E,(1995) “Interior Point Methods for Combinatorial Optimization”, RPI Mathematical Sciences Report

No.217.

[12] Nauss, R.M. (1976) “An Efficient Algorithm for the 0-1 Knapsack Problem”, Management Science, 23, (1),1-15.
[13] Nemhauser,G.L. and Wolsey,L.A.(1988) “Integer and Combinatorial Optimization,Wiley, New York-US.

[14] Schrijver,A.(1986) ”Theory of Linear and Integer Programming” John Wiley, Chichester.

[15] Wolsey,L.A(1998) ”Integer Programming”, John Wiley, New York.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 475 – 482

