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Abstract 

 
Initial transfer function estimates usually require optimisation. In order to obtain a 

more efficient transfer function model, a manual estimation method is often employed. 
This manual estimation method, even though it results to better estimates of the transfer 
function model, it still does not give an optimum outcome. In order to obtain an 
optimum transfer function estimate, open source software based on genetic algorithm 
was developed. The software was developed with Visual Basic programming language. 
In order to test the software, a transfer function model was developed from data 
obtained from industry. The forecast obtained from the transfer function model has a 
MAPE of 99.82%. After optimisation using the developed software the MAPE of the new 
forecast was 99.84%. This shows a marginal improvement in forecast accuracy. 
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       Nomenclature, Symbols and Notations 

v(B)  = Transfer function 
B = backshift operator 
Y t = process output 
X t = process input 
yt = differenced output series 
xt = differenced input series 
at = error term/white noise 
υk = impulse response weight at lag k 
θ = moving average operator 
φ = autoregressive operator 
b = transfer function lag 
ω = difference equation variable for input 
δ = difference equation variable for output 

Introduction 
 
Initial estimates of transfer function models often require improvement in the estimate in order to increase its efficiency. 

Usually, a manual estimation method based on trial and error is often adopted. Such manual estimates are not efficient. 
Efficient estimation of transfer function models leads to better forecasts, improved design of plants and equipment, 

improved plant maintenance and replacement, and better quality control. 
Using manual methods in transfer function estimation improvement is rigorous, slow and often leads to errors. Beside 

these shortcomings, such methods are not very efficient. 
Using optimisation approaches based on meta-heuristics is an attractive tool in efficiency improvement of transfer 

function estimates. This is because in metaheuristic randomness are deliberately introduced into the search process as a 
means of speeding convergence and making the algorithm less sensitive to modelling errors. Most of the methods in 
MetaHeuristics mimic natural processes [5], [7] and [8]. Some examples of MetaHeuristics methods include: genetic 
algorithm, Tabu Search, Ant Colony Optimisation etc. It has been reported that metaheuristics have become more standard in 
several fields of sciences, but their use in estimation and modelling in statistics appears to be still limited and transfer 
function modelling is no exception [9].  
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Genetic algorithm was defined as an optimisation and search technique based on the principles of genetics and natural 

selection [5]. The method was developed by John Holland over the course of the 1960s and 1970s and finally popularised by 
his student, David Goldberg [5]. The landmark works of Holland and Goldberg can be found in [4] and [6]. 

Haupt and Haupt listed the advantages of genetic algorithm to include the following: 
1. can handle optimisation with continuous and discrete variables; 
2. does not require derivative information; 
3. simultaneously searches from a wide sampling of the cost surface; 
4. deals with a large number of variables; 
5. it is well suited for parallel computers; 
6. optimises variables with extremely complex cost surfaces; 
7. provides a list of optimum variables, not just a single solution; 
8. may encode the variables so that the optimisation is done with the encoded variables; 
9. works with numerically generated data, experimental data, or analytical functions. 
These advantages enumerated above make genetic algorithm a very good candidate for optimising transfer function 

models. The aim of this work, therefore, is to apply genetic algorithm to the optimisation of transfer function models so as to 
facilitate the attainment of the optimal outcome. 

 
Methodology 
Transfer Function Model Building 
A sixty-five-month input-output data reflecting the production time series record is depicted as spectral plots in Figures 1 

and 2 respectively. A close examination of the two shows the output is an after-image of the input. Besides, both are 
stochastically irregular. It is pertinent to stress that the company manufactures milk tin cans for commercial milk production. 
The inputs are sheet metal that is coated with tin metal after cans are produced. Both input and output materials are measured 
in kilograms.  

 
Figure 1: Spectral plot of the input time series 

 
Figure 2: Spectral plot of the output time series 
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Since a production process is best described by a discrete transfer function model, for our analysis we assumed 

a transfer function model of the form: 

(1)                                                                )()(1
tNbtXBBtY +−

−= ωδ
 

The noise term, Nt, is represented by an ARIMA (p,d,q) process such that: 

(2)                                                                                )()(1
taBBtN θϕ −=

 
Here at is the white noise. Substituting equation (2) into (1), gives 

(3)                                              )()(1)()(1
taBBbtXBBtY θϕωδ −+−

−=
 

Development of the Genetic Algorithm 
 
The Model Parameters 
As transfer function model parameters are continuous variables, the genetic algorithm method adopted was the 

continuous genetic algorithm. The model parameters are: b, δ, ω, φ and θ. 
 
The Cost Function and Initial Population 

(i) The Cost Function  
A close approximation to the maximum likelihood estimates of the parameters of the transfer function can be obtained by 

minimizing the conditional sum of squares function [1] and [2]. 

2( , , , , ) ( , , , , | , , )  0 0 0 0
1

n
S b a b x y at

t
δ ω ϕ θ δ ω ϕ θ=

=
∑   (4) 

Here x0, y0 and a0 are starting values prior to the commencement of the series. 
The cost function of the genetic algorithm was therefore determined by the least squares method, where the optimum 

model minimizes the least squares function. 
 

(ii)The Initial Population 
The initial population of the evolutionary system was kept at eight (8). The population that survives to the next 

generation is four (4), hence Nkeep=4. Table 1 shows the initial population of the chromosomes after sorting and ranking. X, Y 
and Z in Table 1 represent the model parameters while C represents the least square estimate. 

 
Table 1: Initial Chromosome Population 

CHROMOSOMES COST 
X1 Y1 Z1 C1 

X2 Y2 Z2 C2 

X3 Y3 Z3 C3 

X4 Y4 Z4 C4 

X5 Y5 Z5 C5 

X6 Y6 Z6 C6 

X7 Y7 Z7 C7 

X8 Y8 Z8 C8 

 
C1>C2>C3>C4> C5>C6>C7>C8 

 
Breeding and Mutation 

(i) Breeding 
The breeding follows certain rules. A random number generator selects the pairs that would mate and breed the 

next generation. The pairing is done according to the rule in Table 2. 
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Table 2: Pairing Rule 

ROWS RND 
R1 0.4 

R2 0.7 

R3 0.9 

R4 1 
 

According to the pairing rule in Table 2, if the random number value is less than 0.4, Row 1 (R1) is selected for pairing, 
if it lies between 0.4 and 0.7, Row 2 (R2) is selected, if it lies between 0.7 and 0.9, Row 3 (R3) is selected, if it lies between 
0.9 and 1, Row 4 (R4) is selected. After pairing, the crossover point is selected by the random number generator. Assuming 
that after pairing R1, R2 and R1, R3 were selected for mating, Table 1 is changed as shown in Table 3. 

 
Table 3: Initial Chromosome Population after Pairing 

 

CHROMOSOMES COST 
X1 Y1 Z1 C1 

X2 Y2 Z2 C2 

X3 Y3 Z3 C3 

X4 Y4 Z4 C4 

X1 Y1 Z1 C1 

X2 Y2 Z2 C2 

X1 Y1 Z1 C1 

X3 Y3 Z3 C3 
 

A random number selects the crossover point. Assuming column 3 is selected as the crossover point; Table 3 is changed 
to Table 4 below. 

Table 4: Initial Chromosome Population after Crossover 

CHROMOSOMES COST 
X1 Y1 Z1 C1 

X2 Y2 Z2 C2 

X3 Y3 Z3 C3 

X4 Y4 Z4 C4 

X1 Y1 Z2 Cnew1 

X2 Y2 Z1 Cnew2 

X1 Y1 Z3 Cnew3 

X3 Y3 Z1 Cnew4 
 
New strains are introduced in the breeding population. A random number generator selects the column in the mating 

population where new strains will be introduced. Assuming column 2 is chosen, new strains are introduced according to the 
following formula [5]. 

RNDT =
 

)2()1(11 YTYTYYnew ×+×−=
 

)2()1(22 YTYTYYnew ×−×+=
 

RNDN =
 

)3()1(13 YNYNYYnew ×+×−=
 

)3()1(34 YTYNYYnew ×−×+=
 

After introducing new strains, the population will be as shown in Table 5. 
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Table 5: Population after Crossover and Introduction of new Strains 

CHROMOSOMES COST 

X1 Y1 Z1 C1 

X2 Y2 Z2 C2 

X3 Y3 Z3 C3 

X4 Y4 Z4 C4 

X1 Ynew1 Z2 Cnew1 

X2 Ynew2 Z1 Cnew2 

X1 Ynew3 Z3 Cnew3 

X3 Ynew4 Z1 Cnew4 
 

(ii) Mutation 
According to our methodology, 20 percent of the chromosome population are selected for mutation. Hence the 

number of chromosomes selected for mutation is 4. A random number generator selects the chromosomes that will 
undergo mutation. After mutation the new population could be as shown in Table 6. 

Table 6: Population after Mutation 

CHROMOSOMES COST 
Xnew2 Y1 Z1 Cnew5 

X2 Y2 Z2 C2 

X3 Y3 Znew1 Cnew6 

X4 Ynew5 Z4 Cnew7 

Xnew1 Ynew1 Z2 Cnew1 

X2 Ynew2 Z1 Cnew2 

X1 Ynew3 Z3 Cnew3 

X3 Ynew4 Z1 Cnew4 
 
Software Design Methodology 
Choice of Programming Language 
The programming language used was Visual Basic [3]. The language was chosen because it has rich graphic 

features and graphical software development tools. The user friendly integrated software development environment 
maximizes the programmer’s productivity and minimizes errors during software development. 

 
Software Architecture 
The software consists of three modules namely: the main module and two sub modules. The software 

architecture is shown in figures 3 and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Main software architecture 
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Figure 4 shows the genetic algorithm in the two and three variables modules. As shown in the algorithm, the 

evolution occurred in 4000 iterations. In order words 4000 generations were analysed before the optimum genetic 
combinations were selected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Genetic Algorithm Flow Chart 
Figure 5 shows the optimisation algorithm. The optimisation algorithm does the selection, breeding and 

mutation required to evolve from one generation to the next. 
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Fig. 5 Optimisation algorithm 
 
Results Presentation and Analysis 
 
After modelling, the following transfer function model was developed: 

(5)                                       22.016522.09932.011
ˆ

−+−−+−+−= tetetStJtYtY
 

This transfer function model is tentative and therefore requires optimisation to obtain the most efficient model. 
Consequently, the software was developed using visual basic programming language for optimising the model with 
genetic algorithm. Some of the software codes is shown in the appendix. 

The user interfaces of the software developed for the optimisation are shown in figures 6, 7 and 8. The software 
developed as depicted in the figures under reference suggests that the optimisation can be applied to two-variable as 
well as three-variable problem situations. However, in this study, the latter case was adopted. 
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Fig. 6 Main Software Module 
 
Examination of the two variable module shown in Figure 7 shows that it accepts two transfer function variables 

X and Y for optimisation. The data from the time series whose model is to be optimised are usually saved on the 
disk and retrieved prior to optimisation. The save and open buttons in Figure 7 does this. The three variable module 
shown in Figure 8 is similar to the two variable module except that it accepts three transfer function variables X, Y 
and Z. 

 
 
Fig. 7 Genetic algorithm module for two variables 
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Fig. 8 Genetic algorithm module for three variables 
 
Figure 6 shows the initial population of the transfer function variables and their initial costs. As shown in the 

figure the tentative transfer function parameter which are entered in the text boxes have the least cost. 

 
Fig. 9 The final population after optimisation 
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Figure 9 shows the population of the transfer function variables in the last generation and their costs. The last 

generation was obtained after 4000 iterations. As shown in the figure the least cost is 23142. The transfer function 
parameters that gave rise to the least cost are: 

10342.02 and 99955.01  ,993211.00 === θθw
 

After optimisation with the computer software, the optimum transfer function model was determined as: 

(6)                                 210342.01999245.0993211.011
ˆ

−+−−+−+−= tetetStJtYtY
 

The forecast obtained from the transfer function model in equation (5) has an MAPE of 99.82%. The forecast 
obtained from the optimised model shown in equation (6) above was 99.84%. 

 

Discussion 
We have been able to show here that tentative transfer function models developed by Box-Jenkins method are 

tentative and require more efficient estimation. Hence, optimisation is needed. We have demonstrated that genetic 
algorithm is a very good optimisation tool for optimising transfer function models. 

Although the initial estimate of the transfer function resulted to excellent forecasts with 99.84% mean absolute 
percentage error (MAPE), the 0.02 percent increase in the MAPE after optimisation is remarkable considering the 
fact that the initial transfer function model estimate was excellent. This therefore confirms the fact that better 
transfer function models could be got through genetic algorithm. 

The success of genetic algorithm in transfer function model optimisation necessitates the need to try other meta-
heuristics methods such as Tabu Search and Ant Colony Optimisation. A comparison of the various meta-heuristics 
methods would reveal the best method for transfer function model optimisation [9]. 

Finally, the software developed in this work is open source and could be obtained from the authors and 
modified to suit different models. 

 

6.0 Conclusion 
Transfer function models are extremely useful and have wide application in industry. They are widely used in 

forecasting, plant design and redesign etc, hence excellent models results to excellent forecasts and designs. Hence, 
any technique, like the one demonstrated here, that results to better transfer function models results to better 
forecasts and design. 

It is therefore expected that the optimisation software developed here would be used by engineers and scientists 
in solving industrial and scientific problems. 

 
APPENDIX 
 

SAMPLE SOFTWARE CODES 
 
The Procedure for Breeding 
Private Sub CmdBreed_Click() 
    'Pairing 
    Pair 
    'Mating 
    'Select crossover point 
    Y = Rnd 
    If Y < 0.166 Then 
        j = 0 
        k = 1 
        l = 2 
    ElseIf Y < 0.332 Then 
        j = 0 
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        k = 2 
        l = 1 
    ElseIf Y < 0.498 Then 
        j = 1 
        k = 0 
        l = 2 
    ElseIf Y < 0.664 Then 
        j = 1 
        k = 2 
        l = 0 
    ElseIf Y < 0.83 Then 
        j = 2 
        k = 1 
        l = 0 
    ElseIf Y < 1 Then 
        j = 2 
        k = 0 
        l = 1 
    End If 
     
    'Assign new values to the chromosomes prior to cross over 
    ArrayPop(4, j) = ArrayPop(Pairs(0), j) 
    ArrayPop(5, j) = ArrayPop(Pairs(1), j) 
    ArrayPop(6, j) = ArrayPop(Pairs(2), j) 
    ArrayPop(7, j) = ArrayPop(Pairs(3), j) 
 
    ArrayPop(4, k) = ArrayPop(Pairs(0), k) 
    ArrayPop(5, k) = ArrayPop(Pairs(1), k) 
    ArrayPop(6, k) = ArrayPop(Pairs(2), k) 
    ArrayPop(7, k) = ArrayPop(Pairs(3), k) 
    'Crossover 
    Swap ArrayPop(4, k), ArrayPop(5, k) 
    Swap ArrayPop(6, k), ArrayPop(7, k) 
     
    'Produce new strains in the chromosomes 
    j1 = ArrayPop(4, l) 
    j2 = ArrayPop(5, l) 
    X = Rnd 
    ArrayPop(4, l) = j1 - (X * j1) + X * j2 
    ArrayPop(5, l) = j2 + (X * j1) - X * j2 
    j1 = ArrayPop(6, l) 
    j2 = ArrayPop(7, l) 
    X = Rnd 
    ArrayPop(6, l) = j1 - (X * j1) + X * j2 
    ArrayPop(7, l) = j2 + (X * j1) - X * j2 
End Sub 
 
The Procedure for Pairing 
Sub Pair() 
    j = 0 
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    k = 1 
    m = 0 
    p = 0 
    Do While m < 2 
         For i = 1 To 2 
             X = Rnd 
             If X < 0.4 Then 
               k = 0 
             ElseIf X < 0.7 Then 
               k = 1 
             ElseIf X < 0.9 Then 
               k = 2 
             ElseIf X < 1 Then 
               k = 3 
             End If 
             Y = Rnd 
             If Y < 0.4 Then 
               j = 0 
             ElseIf Y < 0.7 Then 
               j = 1 
             ElseIf Y < 0.9 Then 
               j = 2 
             ElseIf Y < 1 Then 
               j = 3 
             End If 
             If j = k Then Exit For 
             'l = p + 1 
             'v = p + 2 
             Pairs(p) = k 
             p = p + 1 
              
             Pairs(p) = j 
             p = p + 1 
             m = m + 1 
             If m > 1 Then Exit For 
         Next i 
             If m > 1 Then 
                    ' This condition tests this senario: 2,3,2,3 
                    If Pairs(0) = Pairs(2) And Pairs(1) = Pairs(3) Then 
                       m = m - 1 
                       p = 2 
                    End If 
                    ' This condition tests this senario: 2,3,3,2 
                    If Pairs(0) = Pairs(3) And Pairs(1) = Pairs(2) Then 
                       m = m - 1 
                       p = 2 
                    End If 
             End If 
    Loop 
End Sub 
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The Procedure for Mutation 
Private Sub CmdMutate_Click() 
     Dim MutateArray(3, 1) As Integer 
     Dim MutateItems As New Collection 
     j = 0 
     k = 0 
     m = 0 
     Dim b As String 
         
     Do While m < 4 
            X = Rnd 
                   If X < 0.125 Then 
              k = 0 
            ElseIf X < 0.25 Then 
              k = 1 
            ElseIf X < 0.375 Then 
              k = 2 
            ElseIf X < 0.5 Then 
              k = 3 
            ElseIf X < 0.625 Then 
              k = 4 
            ElseIf X < 0.75 Then 
              k = 5 
            ElseIf X < 0.875 Then 
              k = 6 
            ElseIf X < 1 Then 
              k = 7 
            End If 
             
            Y = Rnd 
        
            If Y < 0.5 Then 
              j = 0 
            ElseIf Y < 1 Then 
              j = 1 
            End If 
            f = CStr(k) 
            t = CStr(j) 
            b = f + t 
            On Error Resume Next 
            MutateItems.Add m, b 
            MutateArray(m, 0) = k 
            MutateArray(m, 1) = j 
            m = m + 1 
            If m <> MutateItems.Count Then 
                m = m - 1 
            End If 
     Loop 
     ArrayPop(MutateArray(0, 0), MutateArray(0, 1)) = Rnd 
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  ArrayPop(MutateArray(1, 0), MutateArray(1, 1)) = Rnd 
     ArrayPop(MutateArray(2, 0), MutateArray(2, 1)) = Rnd 
     ArrayPop(MutateArray(3, 0), MutateArray(3, 1)) = Rnd 
End Sub 
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