
439

Journal of the Nigerian Association of Mathematical Physics
Volume 19 (November, 2011), pp 439 – 452

© J. of NAMP
Optimisation of Transfer Function Models using Genetic Algorithms

A.C. Igboanugo1* and C. C. Nwobi-Okoye2

 1 Department of Production Engineering,
University of Benin, Benin City, Edo State, Nigeria

 2 Emeagwali Centre for Research,
Anambra State University, Uli, Nigeria

Abstract

Initial transfer function estimates usually require optimisation. In order to obtain a

more efficient transfer function model, a manual estimation method is often employed.
This manual estimation method, even though it results to better estimates of the transfer
function model, it still does not give an optimum outcome. In order to obtain an
optimum transfer function estimate, open source software based on genetic algorithm
was developed. The software was developed with Visual Basic programming language.
In order to test the software, a transfer function model was developed from data
obtained from industry. The forecast obtained from the transfer function model has a
MAPE of 99.82%. After optimisation using the developed software the MAPE of the new
forecast was 99.84%. This shows a marginal improvement in forecast accuracy.

Keywords: Transfer function, Genetic Algorithm, Optimisation, Open Source, Software

 Nomenclature, Symbols and Notations

v(B) = Transfer function
B = backshift operator
Y t = process output
X t = process input
yt = differenced output series
xt = differenced input series
at = error term/white noise
υk = impulse response weight at lag k
θ = moving average operator
φ = autoregressive operator
b = transfer function lag
ω = difference equation variable for input
δ = difference equation variable for output

Introduction

Initial estimates of transfer function models often require improvement in the estimate in order to increase its efficiency.

Usually, a manual estimation method based on trial and error is often adopted. Such manual estimates are not efficient.
Efficient estimation of transfer function models leads to better forecasts, improved design of plants and equipment,

improved plant maintenance and replacement, and better quality control.
Using manual methods in transfer function estimation improvement is rigorous, slow and often leads to errors. Beside

these shortcomings, such methods are not very efficient.
Using optimisation approaches based on meta-heuristics is an attractive tool in efficiency improvement of transfer

function estimates. This is because in metaheuristic randomness are deliberately introduced into the search process as a
means of speeding convergence and making the algorithm less sensitive to modelling errors. Most of the methods in
MetaHeuristics mimic natural processes [5], [7] and [8]. Some examples of MetaHeuristics methods include: genetic
algorithm, Tabu Search, Ant Colony Optimisation etc. It has been reported that metaheuristics have become more standard in
several fields of sciences, but their use in estimation and modelling in statistics appears to be still limited and transfer
function modelling is no exception [9].

Corresponding author: A.C. Igboanugo, E-mail: dracigboanugo@yahoo.com, Tel. +2348033830934
 Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

440

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP
Genetic algorithm was defined as an optimisation and search technique based on the principles of genetics and natural

selection [5]. The method was developed by John Holland over the course of the 1960s and 1970s and finally popularised by
his student, David Goldberg [5]. The landmark works of Holland and Goldberg can be found in [4] and [6].

Haupt and Haupt listed the advantages of genetic algorithm to include the following:
1. can handle optimisation with continuous and discrete variables;
2. does not require derivative information;
3. simultaneously searches from a wide sampling of the cost surface;
4. deals with a large number of variables;
5. it is well suited for parallel computers;
6. optimises variables with extremely complex cost surfaces;
7. provides a list of optimum variables, not just a single solution;
8. may encode the variables so that the optimisation is done with the encoded variables;
9. works with numerically generated data, experimental data, or analytical functions.
These advantages enumerated above make genetic algorithm a very good candidate for optimising transfer function

models. The aim of this work, therefore, is to apply genetic algorithm to the optimisation of transfer function models so as to
facilitate the attainment of the optimal outcome.

Methodology
Transfer Function Model Building
A sixty-five-month input-output data reflecting the production time series record is depicted as spectral plots in Figures 1

and 2 respectively. A close examination of the two shows the output is an after-image of the input. Besides, both are
stochastically irregular. It is pertinent to stress that the company manufactures milk tin cans for commercial milk production.
The inputs are sheet metal that is coated with tin metal after cans are produced. Both input and output materials are measured
in kilograms.

Figure 1: Spectral plot of the input time series

Figure 2: Spectral plot of the output time series

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

441

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Since a production process is best described by a discrete transfer function model, for our analysis we assumed

a transfer function model of the form:

(1))()(1
tNbtXBBtY +−

−= ωδ

The noise term, Nt, is represented by an ARIMA (p,d,q) process such that:

(2))()(1
taBBtN θϕ −=

Here at is the white noise. Substituting equation (2) into (1), gives

(3))()(1)()(1
taBBbtXBBtY θϕωδ −+−

−=

Development of the Genetic Algorithm

The Model Parameters
As transfer function model parameters are continuous variables, the genetic algorithm method adopted was the

continuous genetic algorithm. The model parameters are: b, δ, ω, φ and θ.

The Cost Function and Initial Population

(i) The Cost Function
A close approximation to the maximum likelihood estimates of the parameters of the transfer function can be obtained by

minimizing the conditional sum of squares function [1] and [2].

2(, , , ,) (, , , , | , ,) 0 0 0 0
1

n
S b a b x y at

t
δ ω ϕ θ δ ω ϕ θ=

=
∑ (4)

Here x0, y0 and a0 are starting values prior to the commencement of the series.
The cost function of the genetic algorithm was therefore determined by the least squares method, where the optimum

model minimizes the least squares function.

(ii)The Initial Population
The initial population of the evolutionary system was kept at eight (8). The population that survives to the next

generation is four (4), hence Nkeep=4. Table 1 shows the initial population of the chromosomes after sorting and ranking. X, Y
and Z in Table 1 represent the model parameters while C represents the least square estimate.

Table 1: Initial Chromosome Population

CHROMOSOMES COST
X1 Y1 Z1 C1

X2 Y2 Z2 C2

X3 Y3 Z3 C3

X4 Y4 Z4 C4

X5 Y5 Z5 C5

X6 Y6 Z6 C6

X7 Y7 Z7 C7

X8 Y8 Z8 C8

C1>C2>C3>C4> C5>C6>C7>C8

Breeding and Mutation

(i) Breeding
The breeding follows certain rules. A random number generator selects the pairs that would mate and breed the

next generation. The pairing is done according to the rule in Table 2.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

442

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Table 2: Pairing Rule

ROWS RND
R1 0.4

R2 0.7

R3 0.9

R4 1

According to the pairing rule in Table 2, if the random number value is less than 0.4, Row 1 (R1) is selected for pairing,
if it lies between 0.4 and 0.7, Row 2 (R2) is selected, if it lies between 0.7 and 0.9, Row 3 (R3) is selected, if it lies between
0.9 and 1, Row 4 (R4) is selected. After pairing, the crossover point is selected by the random number generator. Assuming
that after pairing R1, R2 and R1, R3 were selected for mating, Table 1 is changed as shown in Table 3.

Table 3: Initial Chromosome Population after Pairing

CHROMOSOMES COST
X1 Y1 Z1 C1

X2 Y2 Z2 C2

X3 Y3 Z3 C3

X4 Y4 Z4 C4

X1 Y1 Z1 C1

X2 Y2 Z2 C2

X1 Y1 Z1 C1

X3 Y3 Z3 C3

A random number selects the crossover point. Assuming column 3 is selected as the crossover point; Table 3 is changed
to Table 4 below.

Table 4: Initial Chromosome Population after Crossover

CHROMOSOMES COST
X1 Y1 Z1 C1

X2 Y2 Z2 C2

X3 Y3 Z3 C3

X4 Y4 Z4 C4

X1 Y1 Z2 Cnew1

X2 Y2 Z1 Cnew2

X1 Y1 Z3 Cnew3

X3 Y3 Z1 Cnew4

New strains are introduced in the breeding population. A random number generator selects the column in the mating

population where new strains will be introduced. Assuming column 2 is chosen, new strains are introduced according to the
following formula [5].

RNDT =

)2()1(11 YTYTYYnew ×+×−=

)2()1(22 YTYTYYnew ×−×+=

RNDN =

)3()1(13 YNYNYYnew ×+×−=

)3()1(34 YTYNYYnew ×−×+=

After introducing new strains, the population will be as shown in Table 5.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

443

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP
Table 5: Population after Crossover and Introduction of new Strains

CHROMOSOMES COST

X1 Y1 Z1 C1

X2 Y2 Z2 C2

X3 Y3 Z3 C3

X4 Y4 Z4 C4

X1 Ynew1 Z2 Cnew1

X2 Ynew2 Z1 Cnew2

X1 Ynew3 Z3 Cnew3

X3 Ynew4 Z1 Cnew4

(ii) Mutation
According to our methodology, 20 percent of the chromosome population are selected for mutation. Hence the

number of chromosomes selected for mutation is 4. A random number generator selects the chromosomes that will
undergo mutation. After mutation the new population could be as shown in Table 6.

Table 6: Population after Mutation

CHROMOSOMES COST
Xnew2 Y1 Z1 Cnew5

X2 Y2 Z2 C2

X3 Y3 Znew1 Cnew6

X4 Ynew5 Z4 Cnew7

Xnew1 Ynew1 Z2 Cnew1

X2 Ynew2 Z1 Cnew2

X1 Ynew3 Z3 Cnew3

X3 Ynew4 Z1 Cnew4

Software Design Methodology
Choice of Programming Language
The programming language used was Visual Basic [3]. The language was chosen because it has rich graphic

features and graphical software development tools. The user friendly integrated software development environment
maximizes the programmer’s productivity and minimizes errors during software development.

Software Architecture
The software consists of three modules namely: the main module and two sub modules. The software

architecture is shown in figures 3 and 4.

Fig. 3 Main software architecture

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

Start

MAIN
MODULE

Three
Variable

 MODULE

Two
Variable

 MODULE

Stop

444

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Figure 4 shows the genetic algorithm in the two and three variables modules. As shown in the algorithm, the

evolution occurred in 4000 iterations. In order words 4000 generations were analysed before the optimum genetic
combinations were selected.

Fig. 4 Genetic Algorithm Flow Chart
Figure 5 shows the optimisation algorithm. The optimisation algorithm does the selection, breeding and

mutation required to evolve from one generation to the next.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

While

Start

Counter<4000

Counter=0

Counter=Counter+1

EndWhile

Stop

Optimize

Generate and Store initial variables and their

associated cost

Display Optimum Cost and Final

Variables

Store initial Optimum cost

445

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Fig. 5 Optimisation algorithm

Results Presentation and Analysis

After modelling, the following transfer function model was developed:

(5) 22.016522.09932.011
ˆ

−+−−+−+−= tetetStJtYtY

This transfer function model is tentative and therefore requires optimisation to obtain the most efficient model.
Consequently, the software was developed using visual basic programming language for optimising the model with
genetic algorithm. Some of the software codes is shown in the appendix.

The user interfaces of the software developed for the optimisation are shown in figures 6, 7 and 8. The software
developed as depicted in the figures under reference suggests that the optimisation can be applied to two-variable as
well as three-variable problem situations. However, in this study, the latter case was adopted.

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

Start

Breed

Stop

Mutate

Calculate Cost

Sort

Is OptimumCost>InitialOptimum?

Store variables and their associated cost

Yes

No

446

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Fig. 6 Main Software Module

Examination of the two variable module shown in Figure 7 shows that it accepts two transfer function variables

X and Y for optimisation. The data from the time series whose model is to be optimised are usually saved on the
disk and retrieved prior to optimisation. The save and open buttons in Figure 7 does this. The three variable module
shown in Figure 8 is similar to the two variable module except that it accepts three transfer function variables X, Y
and Z.

Fig. 7 Genetic algorithm module for two variables

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

447

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Fig. 8 Genetic algorithm module for three variables

Figure 6 shows the initial population of the transfer function variables and their initial costs. As shown in the

figure the tentative transfer function parameter which are entered in the text boxes have the least cost.

Fig. 9 The final population after optimisation

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

448

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

Figure 9 shows the population of the transfer function variables in the last generation and their costs. The last

generation was obtained after 4000 iterations. As shown in the figure the least cost is 23142. The transfer function
parameters that gave rise to the least cost are:

10342.02 and 99955.01 ,993211.00 === θθw

After optimisation with the computer software, the optimum transfer function model was determined as:

(6) 210342.01999245.0993211.011
ˆ

−+−−+−+−= tetetStJtYtY

The forecast obtained from the transfer function model in equation (5) has an MAPE of 99.82%. The forecast
obtained from the optimised model shown in equation (6) above was 99.84%.

Discussion
We have been able to show here that tentative transfer function models developed by Box-Jenkins method are

tentative and require more efficient estimation. Hence, optimisation is needed. We have demonstrated that genetic
algorithm is a very good optimisation tool for optimising transfer function models.

Although the initial estimate of the transfer function resulted to excellent forecasts with 99.84% mean absolute
percentage error (MAPE), the 0.02 percent increase in the MAPE after optimisation is remarkable considering the
fact that the initial transfer function model estimate was excellent. This therefore confirms the fact that better
transfer function models could be got through genetic algorithm.

The success of genetic algorithm in transfer function model optimisation necessitates the need to try other meta-
heuristics methods such as Tabu Search and Ant Colony Optimisation. A comparison of the various meta-heuristics
methods would reveal the best method for transfer function model optimisation [9].

Finally, the software developed in this work is open source and could be obtained from the authors and
modified to suit different models.

6.0 Conclusion
Transfer function models are extremely useful and have wide application in industry. They are widely used in

forecasting, plant design and redesign etc, hence excellent models results to excellent forecasts and designs. Hence,
any technique, like the one demonstrated here, that results to better transfer function models results to better
forecasts and design.

It is therefore expected that the optimisation software developed here would be used by engineers and scientists
in solving industrial and scientific problems.

APPENDIX

SAMPLE SOFTWARE CODES

The Procedure for Breeding
Private Sub CmdBreed_Click()
 'Pairing
 Pair
 'Mating
 'Select crossover point
 Y = Rnd
 If Y < 0.166 Then
 j = 0
 k = 1
 l = 2
 ElseIf Y < 0.332 Then
 j = 0

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

449

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

 k = 2
 l = 1
 ElseIf Y < 0.498 Then
 j = 1
 k = 0
 l = 2
 ElseIf Y < 0.664 Then
 j = 1
 k = 2
 l = 0
 ElseIf Y < 0.83 Then
 j = 2
 k = 1
 l = 0
 ElseIf Y < 1 Then
 j = 2
 k = 0
 l = 1
 End If

 'Assign new values to the chromosomes prior to cross over
 ArrayPop(4, j) = ArrayPop(Pairs(0), j)
 ArrayPop(5, j) = ArrayPop(Pairs(1), j)
 ArrayPop(6, j) = ArrayPop(Pairs(2), j)
 ArrayPop(7, j) = ArrayPop(Pairs(3), j)

 ArrayPop(4, k) = ArrayPop(Pairs(0), k)
 ArrayPop(5, k) = ArrayPop(Pairs(1), k)
 ArrayPop(6, k) = ArrayPop(Pairs(2), k)
 ArrayPop(7, k) = ArrayPop(Pairs(3), k)
 'Crossover
 Swap ArrayPop(4, k), ArrayPop(5, k)
 Swap ArrayPop(6, k), ArrayPop(7, k)

 'Produce new strains in the chromosomes
 j1 = ArrayPop(4, l)
 j2 = ArrayPop(5, l)
 X = Rnd
 ArrayPop(4, l) = j1 - (X * j1) + X * j2
 ArrayPop(5, l) = j2 + (X * j1) - X * j2
 j1 = ArrayPop(6, l)
 j2 = ArrayPop(7, l)
 X = Rnd
 ArrayPop(6, l) = j1 - (X * j1) + X * j2
 ArrayPop(7, l) = j2 + (X * j1) - X * j2
End Sub

The Procedure for Pairing
Sub Pair()
 j = 0

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

450

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

 k = 1
 m = 0
 p = 0
 Do While m < 2
 For i = 1 To 2
 X = Rnd
 If X < 0.4 Then
 k = 0
 ElseIf X < 0.7 Then
 k = 1
 ElseIf X < 0.9 Then
 k = 2
 ElseIf X < 1 Then
 k = 3
 End If
 Y = Rnd
 If Y < 0.4 Then
 j = 0
 ElseIf Y < 0.7 Then
 j = 1
 ElseIf Y < 0.9 Then
 j = 2
 ElseIf Y < 1 Then
 j = 3
 End If
 If j = k Then Exit For
 'l = p + 1
 'v = p + 2
 Pairs(p) = k
 p = p + 1

 Pairs(p) = j
 p = p + 1
 m = m + 1
 If m > 1 Then Exit For
 Next i
 If m > 1 Then
 ' This condition tests this senario: 2,3,2,3
 If Pairs(0) = Pairs(2) And Pairs(1) = Pairs(3) Then
 m = m - 1
 p = 2
 End If
 ' This condition tests this senario: 2,3,3,2
 If Pairs(0) = Pairs(3) And Pairs(1) = Pairs(2) Then
 m = m - 1
 p = 2
 End If
 End If
 Loop
End Sub

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

451

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

The Procedure for Mutation
Private Sub CmdMutate_Click()
 Dim MutateArray(3, 1) As Integer
 Dim MutateItems As New Collection
 j = 0
 k = 0
 m = 0
 Dim b As String

 Do While m < 4
 X = Rnd
 If X < 0.125 Then
 k = 0
 ElseIf X < 0.25 Then
 k = 1
 ElseIf X < 0.375 Then
 k = 2
 ElseIf X < 0.5 Then
 k = 3
 ElseIf X < 0.625 Then
 k = 4
 ElseIf X < 0.75 Then
 k = 5
 ElseIf X < 0.875 Then
 k = 6
 ElseIf X < 1 Then
 k = 7
 End If

 Y = Rnd

 If Y < 0.5 Then
 j = 0
 ElseIf Y < 1 Then
 j = 1
 End If
 f = CStr(k)
 t = CStr(j)
 b = f + t
 On Error Resume Next
 MutateItems.Add m, b
 MutateArray(m, 0) = k
 MutateArray(m, 1) = j
 m = m + 1
 If m <> MutateItems.Count Then
 m = m - 1
 End If
 Loop
 ArrayPop(MutateArray(0, 0), MutateArray(0, 1)) = Rnd

 Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

452

Optimisation of Transfer Function Models using... Igboanugo and Nwobi-Okoye J of NAMP

 ArrayPop(MutateArray(1, 0), MutateArray(1, 1)) = Rnd
 ArrayPop(MutateArray(2, 0), MutateArray(2, 1)) = Rnd
 ArrayPop(MutateArray(3, 0), MutateArray(3, 1)) = Rnd
End Sub

References

[1] Box, G.E.P., Jenkins G.M. and Reinsel G.C. (1994). Time Series Analysis Forecasting and Control. McGraw-
Hill Inc., USA.

[2] DeLurgio, S.A. (1998). Forecasting Principles and Applications, 3rd Edn, McGraw-Hill, New York, USA.
[3] Evangelous P. (1998). Mastering Visual Basic 6.0, Sybex Inc., 1151 Marina Village Parkway, Alameda, CA

94501, USA.
[4] Goldberg, David E. (1989). Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley.

pp. 41.
[5] Haupt, R.L and Haupt, S.E. (2004). Practical Genetic Algorithms. John Wiley & Sons, Inc., Hoboken, New

Jersey, USA.
[6] Holland, J.H. (1975). Adptation in Natural Selection and Artificial Systems. University of Michigan Press, Ann

Arbor, Michigan, USA.
[7] Sean L. (2009). Essentials of Metaheuristics. Available at http://cs.gmu.edu/!sean/book/metaheuristics/

[Accessed 15th August 2003]
[8] Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. Wiley.
[9] Winker, P. and Gilli, M. (2004). Applications of optimization heuristics to estimation and modelling problems.

Computational Statistics & Data Analysis 47 (2): 211-223.

 Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 439 – 452

