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Abstract 
 
Mathematical and graphical illustrations of unsteady state diffusion in infinite 

porous core are analysed here for proper reservoir characterization. Since petroleum 
engineers are always advocating for some types of mathematical theory necessary to the 
application of laboratory data to field problems, the solution to one direction diffusivity 
equation based upon superposition of exponential and error-function solutions is 
presented. The analysis is valuable in estimating near wellbore effects in field well test 
analysis. 

 

1.0 Introduction 
The governing equation for flow of fluid within the reservoir rock is diffusivity equation defined in terms of pressure. 

Traditional core plug measurement is based on displacement process with Darcy’s equation being the guiding principle and is 
based on steady flow in linear core. The core plug experiments are suitable for evaluating permeability in relatively 
homogeneous reservoirs, if there is adequate sampling. In these reservoirs, the arithmetic average of the core plug data is 
taken to be effective upscaling of reservoir permeability. Very few reservoirs have uniform properties and the core taken 
from bore hole cannot represent the whole formation under investigation. To even have a resemblance of reservoir 
characteristics the core measurement must be frequent enough to capture the reservoir heterogeneities. The high permeability 
and the low permeability zones are likely to be missed. Thus such traditional sampling scheme gives a significant difference 
or biased average. 

In field, well test analysis of pressure profile always provide estimate of reservoir permeability. In heterogeneous, 
reservoirs core data are average for comparison with well test data based on diffusivity equation. Averaging is commonly 
used as a form of upscaling and it is the function of the analyst to find the best upscaling method to fit the data. Jensen et al., 
(1997) proposed power average technique for aggregating the core permeability’s’ upscaling such that well test permeability 
is a power average of permeability variation in the average volume of investigation. Oliver (1990) earlier demonstrated that 
the appropriate averaging technique depends on geological architecture  withing the volume of investigation and, in addition, 
the geology and petrophysics may vary away from the well bore. This implies non-stationarity and has implications for 
reservoir modeling. A well test can provide effective permeability for the volume of investigation, but the derivation of 
permeability is based is based on identification of middle time region. Middle term region reflects the infinite acting radial 
flow period during the pressure transient and knowledge of reservoir thickness is obtained from log interpretation. This log 
derived permeability is based on static reservoir conditions and may be different from effective or dynamic reservoir 
thickness. The early time region on the well test pressure is always affected by near well bore effects such as wellbore storage 
and damage due to drilling operations. This region precedes middle time region and represent the transient response in the 
region nearest to the well. This region is most similar to the core. Some methods proposed for as solutions to this influence 
are use of downhole testing tool which reduces the influence of well bore storage, and integration approach of core and 
production logging for the evaluation of near wellbore heterogeneity. Auguy et al., (1994) arrived at a conclusion that 
changing from core to the well test volume, or from early time to middle time implies statistical non-stationarity. 

Given all the above issues, the comparison between well test and core permeabilities is a challenging issue and we 
propose a new method for analyzing porous rock properties in the laboratory by diffusion process. These processes are based 
on flowing and build up test of the core in the laboratory in accordance with DST well test procedure. The classical method 
of well test as described above is based on two dimensional radial flow (see, Warren and Price, 1961), so the present method 
should based on linear flow using diffusion equation and relatively long linear core. The porous core is initially saturated 
with air and at time � � 0 air is injected at constant injection rate. Pressure is measured simultaneously as pressure wave 
travels through the length of the sample. The measurement chart will give the pressure and time values to be used in 
parameter analysis. Throughout the test period it is only the inlet end that is open to admit fluid while the outlet end is closed.  
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If this system can be constructed, then we can solve near wellbore problem and in comparison with well test data middle time 
region can be easily identified.  
Mathematical formulation. 

����� , ��	 � Dimensionless pressure 
�� � initial core pressure, atmosphere 
�� � dimensionless distance from inlet end. 
�� � dimensionless time travels by the pressure wave. 
� � core permeability, Darcies 
 � porosity, % 
� � fluid compressibility, 1/atmosphere 
� � viscosity, cp. 

The partial differential equation describing fluid flow in a porous medium, in terms of pressure and flow parameters, has 
been developed from three fundamental laws or equations. These three laws that are the basic to the solutions of all fluid 
flow conditions are: 

1. Continuity equation that relates net mass rate inflow into the system to the rate of accumulation of mass in the 
system. It introduces porosity into the diffusion equation. 

2. Darcy’s law of flow of fluid through the rock. It relates the volumetric rate of flow to pressure and transmissibility. 
The transmissibility describes ability of the rock to allow flow of fluid through it. 

3. Equation of state, which introduces the fluid compressibility term, defines the relationship between pressure and 
density. 

Combining these three principles, the governing equation of flow within the porous rock is (Craft and Hawkins) 
mathematically given, for one dimensional flow system, as 
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The initial and boundary conditions are defined as follows: 
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The rate of injection at the injection end is expressed by Darcy’s law given by  
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Now by defining the following dimensionless variables we can reduce the equations to simple form and obtain a general 
solution in parametric form 
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Using equations (5) to (7) in equations (1) to (4) we have the transformed dimensionless equations below: 
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Method of solution 
We apply Laplace transform as function of dimensionless time variable to equations eight to eleven. This linearization 
reduces the diffusion equation to second order ordinary differential equation in space variable. The Laplace transform is 
defined as 
   ����� , �	 � � ��������� , ��	��∞

�                          (12)                                                                               
where � is Laplace variable, and by application of operator (12), we have 

   
 !"

 ��!  � ��                                                  (13) 

And the boundary conditions are 

   
"���,�	

 ��  � #
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   ��$�� % ∞, �& � 0                                          (15) 
The solution to equation (13) is given as linear combination of two independent solutions  
   ����� , �	 � ��√��� � ���√���                   (16) 
Using equation (15) in equation (16), we have � � 0., and by equation (14) 

 � � #
�( !)  . The solution in Laplace space is given by 
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The inversion to time space is by the formula 

   ����� , �	 � � �������� , �	��*+�∞
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We will take advantage of the property of Laplace transformation that relates the integral of a function over a finite interval 
with upper limit fixed, that is 
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Since equation (17) can be separated to the form of equation (19), the inversion will be performed in two steps as follows 
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  Here the integral has a branch point at the origin, which by analytical consideration can be transformed to one with infinite 
real limits. Thus, setting √� � 45 gives 
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The factorisation of the arguments of the exponential function will make the integral separable. Thus 
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The solution to equation (22) is 

   -��� , ��	 � #
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The dimensionless pressure is the integration of equation (23) in the limits zero to one. 

 ����� , ��	 � #
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√< ��3�!
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�                              (24) 

The limits of integration can be transformed into semi infinite terms by making a change of variable  4> � #
6!, and 

performing integration by parts. That is 
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The integral in equation (25) is simplified with substitution of > � �5 to give 

   ����� , ��	 � 2C��
/   ��3!�78� D  .��
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A78�

                    (27) 

The integral is the well known complementary error function. The pressure distribution is therefore given by 
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   ����� , ��	 � 2C��
/   ��3!�78� D  ���EFG H ��

AI��J          (28) 

Analysis Of Results 
Equation (28) gives the pressure profile as a function of time and distance traveled by pressure wave induced by injecting 
unit quantity of fluid. For instant at the inlet, �� � 0, the pressure profile with time is parabolic as shown in Table 1 and 
illustrate in Figure 1 for a flow time less than 0.01. This shows that the exponential term dominates the response throughout 
the flow time. In comparison with the pressure profile at 0.5 from the inlet, the exponential and error function terms cancelled 
out at early time and pressure profile is zero until dimensionless time of 0.019., this is shown in Figure 2 with semilog plot in 

Figure 3. The implication is that a semilog plot of pressure against time will give a slope of 
�#
.  as shown in Figure 2. 

 Furthermore, if the derivative of equation (28) is taken we have a diagnostic equation called derivative equations. Derivative 
equations are used as linearization equation for identifications of flow regimes. That is, the differential of equation (28) is 

   
K"�
K��

��� , ��	 � C #
��/  ��3!�78�                          (29) 

Also we can use the form 

   ��
K"�
K��

��� , ��	 � C��
/   �� 3!�78� 8� 8�                    (30) 

Equations (29) and (30) are called differential and derivative equations respectively. The generated data for these equations 
are shown in columns six and seven of the tables and plotted accordingly in Figures 4 and 5. It is obvious from the data in 
table two that diffusion pressure is an equalisation mechanism with a time lag. 
Conclusion  
We have demonstrated the ability of laboratory experiment to determine reservoir parameters that are comparable to the well 
test analysis. Since injected fluid has same characteristic as the resident fluid, the influence of capillary pressure and 
wettability are zero. The interpretation method will be similar to welltest as well. The interference influence can be appraised 
by simultaneously injecting and measuring pressure at some scaled distance from the injector end. Analysis of interference 
data is one method of obtaining measured areal reservoir heterogeneity and directional variations in reservoir parameters. 
 
   Table 1: pressure and derivative group with respect to time for inlet , �� � 0.  

Dimenless 
Time 

erfc term expo term Pd differential Derivative 

0.001 0 0.036 0.036 17.841 0.018 

0.002 0 0.05 0.05 12.616 0.025 

0.003 0 0.062 0.062 10.301 0.031 

0.004 0 0.071 0.071 8.921 0.036 

0.005 0 0.08 0.08 7.979 0.04 

0.006 0 0.087 0.087 7.284 0.044 

0.007 0 0.094 0.094 6.743 0.047 

0.008 0 0.101 0.101 6.308 0.05 

0.009 0 0.107 0.107 5.947 0.054 

0.01 0 0.113 0.113 5.642 0.056 

0.011 0 0.118 0.118 5.379 0.059 

0.012 0 0.124 0.124 5.15 0.062 

0.013 0 0.129 0.129 4.948 0.064 

0.014 0 0.134 0.134 4.768 0.067 

0.015 0 0.138 0.138 4.607 0.069 

0.016 0 0.143 0.143 4.46 0.071 

0.017 0 0.147 0.147 4.327 0.074 

0.018 0 0.151 0.151 4.205 0.076 

0.019 0 0.156 0.156 4.093 0.078 

0.02 0 0.16 0.16 3.989 0.08 
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    Table 2: pressure and derivative group with respect to time for inlet , �� � 0.5. 

Dimenless 
Time 

erfc term expo term pd differential Derivative 

0.001 0 0 0 0 0 

0.002 0 0 0 0 0 

0.003 0 0 0 0 0 

0.004 0 0 0 0 0 

0.005 0 0 0 0 0 

0.006 0 0 0 0 0 

0.007 0 0 0 0.001 0 

0.008 0 0 0 0.003 0 

0.009 0 0 0 0.006 0 

0.01 0 0 0 0.011 0 

0.011 0 0 0 0.018 0 

0.012 0.001 0.001 0 0.028 0 

0.013 0.001 0.001 0 0.04 0.001 

0.014 0.001 0.002 0 0.055 0.001 

0.015 0.002 0.002 0 0.071 0.001 

0.016 0.003 0.003 0 0.09 0.001 

0.017 0.003 0.004 0 0.11 0.002 

0.018 0.004 0.005 0 0.131 0.002 

0.019 0.005 0.006 0.001 0.153 0.003 

0.02 0.006 0.007 0.001 0.175 0.004 

 

Table 3: pressure data for long flow period 
Dimenless 
Time 

erfc term expo term pd differential derivative 

1 0 1.128 1.128 0.564 0.564 

2 0 1.596 1.596 0.399 0.798 

3 0 1.954 1.954 0.326 0.977 

4 0 2.257 2.257 0.282 1.128 

5 0 2.523 2.523 0.252 1.262 

6 0 2.764 2.764 0.23 1.382 

7 0 2.985 2.985 0.213 1.493 
8 0 3.192 3.192 0.199 1.596 

9 0 3.385 3.385 0.188 1.693 

10 0 3.568 3.568 0.178 1.784 

11 0 3.742 3.742 0.17 1.871 

12 0 3.909 3.909 0.163 1.954 
13 0 4.068 4.068 0.156 2.034 

14 0 4.222 4.222 0.151 2.111 
15 0 4.37 4.37 0.146 2.185 

16 0 4.514 4.514 0.141 2.257 

17 0 4.652 4.652 0.137 2.326 

18 0 4.787 4.787 0.133 2.394 
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19 0 4.918 4.918 0.129 2.459 

20 0 5.046 5.046 0.126 2.523 
 

Table 4: pressure Profile for Long flow time at �� � 0.5 FMN �O� 4PQ�G�4MP RM4P�. 
Dimenless 
Time 

erfc term expo term pd differential derivative 

1 0.362 1.06 0.698 0.53 0.53 

2 0.401 1.547 1.145 0.387 0.773 

3 0.419 1.914 1.495 0.319 0.957 

4 0.43 2.222 1.792 0.278 1.111 

5 0.437 2.492 2.055 0.249 1.246 

6 0.443 2.735 2.293 0.228 1.368 

7 0.447 2.959 2.512 0.211 1.479 

8 0.45 3.167 2.716 0.198 1.583 

9 0.453 3.362 2.909 0.187 1.681 

10 0.455 3.546 3.091 0.177 1.773 

11 0.458 3.721 3.264 0.169 1.861 

12 0.459 3.889 3.429 0.162 1.944 

13 0.461 4.049 3.588 0.156 2.024 

14 0.462 4.203 3.741 0.15 2.102 

15 0.464 4.352 3.888 0.145 2.176 

16 0.465 4.496 4.031 0.14 2.248 

17 0.466 4.635 4.17 0.136 2.318 

18 0.467 4.771 4.304 0.133 2.385 

19 0.468 4.902 4.435 0.129 2.451 

20 0.468 5.031 4.562 0.126 2.515 

 

                  

Figure 1: Dimensionless Pressure Drop profile for injection point �� � 0. 
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Figure 3: pressure derivative profile at �� � 0. 

             

Fig. 3: Log-log plot of pressure and pressure derivative Profiles  
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Fig. 4: Dimensionless Pressure and Derivative Profiles at �� � 0.0 

 

                      

Fig. 5: Dimensionless Pressure and Derivative Profiles at �� � 0.5 
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