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Abstract

Mathematical and graphical illustrations of unsteady state diffusion in infinite
porous core are analysed here for proper reservoir characterization. Since petroleum
engineers are always advocating for some types of mathematical theory necessary to the
application of laboratory data to field problems, the solution to one direction diffusivity
equation based upon superposition of exponential and error-function solutions is
presented. The analysis is valuable in estimating near wellbore effects in field well test
analysis.

1.0 Introduction

The governing equation for flow of fluid within theservoir rock is diffusivity equation defined terms of pressure.
Traditional core plug measurement is based onaligphent process with Darcy’s equation being thdiggiprinciple and is
based on steady flow in linear core. The core pEMpgeriments are suitable for evaluating permegbilit relatively
homogeneous reservoirs, if there is adequate sagndh these reservoirs, the arithmetic averagthefcore plug data is
taken to be effective upscaling of reservoir peioilgg. Very few reservoirs have uniform propertiaad the core taken
from bore hole cannot represent the whole formatimer investigation. To even have a resemblanceesérvoir
characteristics the core measurement must be fintgueugh to capture the reservoir heterogeneifies.high permeability
and the low permeability zones are likely to besais Thus such traditional sampling scheme givagraficant difference
or biased average.

In field, well test analysis of pressure profilevays provide estimate of reservoir permeability. hieterogeneous,
reservoirs core data are average for comparisom wal test data based on diffusivity equation. Fageng is commonly
used as a form of upscaling and it is the functibthe analyst to find the best upscaling methofittine data. Jensen et al.,
(1997) proposed power average technique for agtinegthe core permeability’s’ upscaling such thativtest permeability
is a power average of permeability variation in dverage volume of investigation. Oliver (1990)lieademonstrated that
the appropriate averaging technique depends omgieal architecture withing the volume of inveatign and, in addition,
the geology and petrophysics may vary away fromwedl bore. This implies non-stationarity and hawplications for
reservoir modeling. A well test can provide effeetipermeability for the volume of investigation,tlihe derivation of
permeability is based is based on identificatioomiddle time region. Middle term region reflect timfinite acting radial
flow period during the pressure transient and keolge of reservoir thickness is obtained from |agripretation. This log
derived permeability is based on static reservoinditions and may be different from effective omdgnic reservoir
thickness. The early time region on the well tesspure is always affected by near well bore effsath as wellbore storage
and damage due to drilling operations. This regicecedes middle time region and represent theitringesponse in the
region nearest to the well. This region is mostilsinto the core. Some methods proposed for agisnhito this influence
are use of downhole testing tool which reducesitifieence of well bore storage, and integrationrapph of core and
production logging for the evaluation of near well heterogeneity. Auguy et al., (1994) arrivedaatonclusion that
changing from core to the well test volume, or freamly time to middle time implies statistical nstationarity.

Given all the above issues, the comparison betweslhtest and core permeabilities is a challengsgye and we
propose a new method for analyzing porous rockgntags in the laboratory by diffusion process. Enpsocesses are based
on flowing and build up test of the core in thedediory in accordance with DST well test procediitee classical method
of well test as described above is based on twedswnal radial flow (see, Warren and Price, 1964 )the present method
should based on linear flow using diffusion equatind relatively long linear core. The porous desrénitially saturated
with air and at time = 0 air is injected at constant injection rate. Presss measured simultaneously as pressure wave
travels through the length of the sample. The nmeasent chart will give the pressure and time valtede used in
parameter analysis. Throughout the test perialaniy the inlet end that is open to admit fluidiletthe outlet end is closed.
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If this system can be constructed, then we caresobar wellbore problem and in comparison with west data middle time
region can be easily identified.
Mathematical formulation.
Py (xp, tp) = Dimensionless pressure
P; = initial core pressure, atmosphere
xp = dimensionless distance from inlet end.
tp = dimensionless time travels by the pressure wave.
K = core permeability, Darcies
@ = porosity, %
C = fluid compressibility, 1/atmosphere
u = viscosity, cp.
The partial differential equation describing fldidw in a porous medium, in terms of pressure do@ parameters, has
been developed from three fundamental laws or epsatThese three laws that are the basic to tlutices of all fluid
flow conditions are:

1. Continuity equation that relates net mass ratewmifhto the system to the rate of accumulation aésin the
system. It introduces porosity into the diffusiaruation.

2. Darcy’s law of flow of fluid through the rock. lelates the volumetric rate of flow to pressure tadsmissibility.
The transmissibility describes ability of the raokallow flow of fluid through it.

3. Equation of state, which introduces the fluid coaegsibility term, defines the relationship betwesgspure and
density.

Combining these three principles, the governingatiqn of flow within the porous rock is (Craft aRiwkins)
mathematically given, for one dimensional flow gysf as

0°p _10p (1)
x> n ot
Where,, - K__is called diffusivity constantp = p (x, t) is the pressure distribution as function of positand time.
puc,
The initial and boundary conditions are definedotisws:
P(x,0)=P 2)

The rate of injection at the injection end is exgesl by Darcy’s law given by

(@j :—q_’u (
ox KA

p(x - »,t)=p. (¢
Now by defining the following dimensionless varieblwe can reduce the equations to simple form &tairoa general

solution in parametric form
kAP —pxt)

pD(xD.tD)=—WL : 5)
Pp(xp,s) = AeVs*> 4 Be~Vs¥p (6)
X

=—. 6b’
%= (6b;
=17 (7)

Using equations (5) to (7) in equations (1) tow#)have the transformed dimensionless equatiomswbel
2

o
P (%, 0 =0 ©)
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2 (10
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pol(eaty) =0 (11
Method of solution

We apply Laplace transform as function of dimenigiss time variable to equations eight to eleveris Tinearization
reduces the diffusion equation to second ordemargli differential equation in space variable. Ttaplace transform is
defined as

Py (ap,w) = [ e 74Py (xp, tp)du (12)
whereu is Laplace variable, and by application of operét@), we have

d?p

o uP (13)
And the boundary conditions are

Pplxu) 1

dxp Tu (14)

Pplxp » oo,ul =0 (15)
The solution to equation (13) is given as lineanbmation of two independent solutions

Pp(xp,u) = AeV¥xp 4 pe~Vurp (16)

Using equation (15) in equation (16), we have 0., and by equation (14)
B = 3#/2 The solution in Laplace space is given by
u

Pp(xp,u) = % Be~Vwxp a7

uz2
The inversion to time space is by the formula
Po(xp, ) = [, " Pp(xp, u)du (18)
We will take advantage of the property of Laplasssformation that relates the integral of a funrctover a finite interval
with upper limit fixed, that is

f:e‘“t fot Py(v)dvdu = %PD (xp, 1) (19)
Since equation (17) can be separated to the fomquidition (19), the inversion will be performedvwo steps as follows
1 (0 4, —Vuxp
F(xp, tp) = [ teru (20)

Here the integral has a branch point at the mrighich by analytical consideration can be tramséd to one with infinite
real limits. Thus, settingu = iy gives
F(xp,tp) = %f_(’om eWxp g=to¥? gy, 1)

The factorisation of the arguments of the expoméftinction will make the integral separable. Thus

1 —i 0 ix 2
F(xp tp) = 2e o [* e7005) au 22)
The solution to equation (22) is
xn?2
Fxp,tp) = 7=e *® (23)
The dimensionless pressure is the integration véon (23) in the limits zero to one.
2
1 ptp 1 _XD°
P (xp, tp) = = ODﬁe 1wz dz (24)

The limits of integration can be transformed inems infinite terms by making a change of variable =y1—2, and
performing integration by parts. That is

=L [*, Lovix?
Pp(xp, tp) N f\/%_D 7z € dy (25)
x2
— tp —“—D _ 2x%p (o —y2x2
Pp(xp, tp) = 2 ’n e b N fJ4—1t_De dy (26)
The integral in equation (25) is simplified withbstitution ofz = xy to give
x2
- /f_D “Hp _ 2D (% g2
Pp(xp,tp) =2 |2 e 0 = f\/‘%e dz 27)

The integral is the well known complementary eftmrction. The pressure distribution is therefoneegi by
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Py (xp, tp) = ZE e D — xperfc (ji—%) (28)
Analysis Of Results

Equation (28) gives the pressure profile as a fanadf time and distance traveled by pressure wastaced by injecting
unit quantity of fluid. For instant at the inlet, = 0, the pressure profile with time is parabolic asvamdn Table 1 and
illustrate in Figure 1 for a flow time less tha®®. This shows that the exponential term domintitegesponse throughout
the flow time. In comparison with the pressure geadt 0.5 from the inlet, the exponential and efamction terms cancelled
out at early time and pressure profile is zerol aiithensionless time of 0.019., this is shown igufe 2 with semilog plot in

Figure 3. The implication is that a semilog plopoéssure against time will give a slopeg%-)hs shown in Figure 2.

Furthermore, if the derivative of equation (28)aken we have a diagnostic equation called dévevaquations. Derivative

equations are used as linearization equation #attifications of flow regimes. That is, the diffatial of equation (28) is
2

*°p
9Pp - X oTw
202 (x5, tp) = |1 e (29)

Also we can use the form

xzD

tp 9Pp (xp,tp) = \/5 e 4tptptp (30)
dtp T
Equations (29) and (30) are called differential dedvative equations respectively. The generatdd tbr these equations

are shown in columns six and seven of the tabldspéotted accordingly in Figures 4 and 5. It is iolng from the data in
table two that diffusion pressure is an equalisati@chanism with a time lag.

Conclusion

We have demonstrated the ability of laboratory erpent to determine reservoir parameters that aneparable to the well
test analysis. Since injected fluid has same chkeniatic as the resident fluid, the influence opilary pressure and
wettability are zero. The interpretation method Wwé similar to welltest as well. The interferemeftuence can be appraised
by simultaneously injecting and measuring presstirgome scaled distance from the injector end. ysmalbf interference
data is one method of obtaining measured arealv@séeterogeneity and directional variationseservoir parameters.

Table 1: pressure and derivative group with respect to fonénlet ,x, = 0.

_Il?iinn:eenless erfc term expo term Pd differential Derivative
0.001 0 0.036 0.036 17.841 0.018
0.002 0 0.05 0.05 12.616 0.025
0.003 0 0.062 0.062 10.301 0.031
0.004 0 0.071 0.071 8.921 0.036
0.005 0 0.08 0.08 7.979 0.04
0.006 0 0.087 0.087 7.284 0.044
0.007 0 0.094 0.094 6.743 0.047
0.008 0 0.101 0.101 6.308 0.05
0.009 0 0.107 0.107 5.947 0.054
0.01 0 0.113 0.113 5.642 0.056
0.011 0 0.118 0.118 5.379 0.059
0.012 0 0.124 0.124 5.15 0.062
0.013 0 0.129 0.129 4.948 0.064
0.014 0 0.134 0.134 4.768 0.067
0.015 0 0.138 0.138 4.607 0.069
0.016 0 0.143 0.143 4.46 0.071
0.017 0 0.147 0.147 4.327 0.074
0.018 0 0.151 0.151 4.205 0.076
0.019 0 0.156 0.156 4.093 0.078
0.02 0 0.16 0.16 3.989 0.08
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Table 2 pressure and derivative group with respect to fonénlet ,x, = 0.5.

_Il?iirrrr:snless erfc term | expoterm pd differential ~ Derivative

0.001 0 0 0 0 0

0.002 0 0 0 0 0

0.003 0 0 0 0 0

0.004 0 0 0 0 0

0.005 0 0 0 0 0

0.006 0 0 0 0 0

0.007 0 0 0 0.001 0

0.008 0 0 0 0.003 0

0.009 0 0 0 0.006 0

0.01 0 0 0 0.011 0

0.011 0 0 0 0.018 0

0.012 0.001 0.001 0 0.028 0

0.013 0.001 0.001 0 0.04 0.001

0.014 0.001 0.002 0 0.055 0.001

0.015 0.002 0.002 0 0.071 0.001

0.016 0.003 0.003 0 0.09 0.001

0.017 0.003 0.004 0 0.11 0.002

0.018 0.004 0.005 0 0.131 0.002

0.019 0.005 0.006 0.001 0.153 0.003

0.02 0.006 0.007 0.001 0.175 0.004

Table 3 pressure data for long flow period

_II:_)iirrnngnless erfcterm | expoterm pd differential derivative
1 0 1.128 1.128 0.564 0.564
2 0 1.596 1.596 0.399 0.798
3 0 1.954 1.954 0.326 0.977
4 0 2.257 2.257 0.282 1.128
5 0 2.523 2.523 0.252 1.262
6 0 2.764 2.764 0.23 1.382
7 0 2.985 2.985 0.213 1.493
8 0 3.192 3.192 0.199 1.596
9 0 3.385 3.385 0.188 1.693
10 0 3.568 3.568 0.178 1.784
11 0 3.742 3.742 0.17 1.871
12 0 3.909 3.909 0.163 1.954
13 0 4.068 4.068 0.156 2.034
14 0 4.222 4.222 0.151 2.111
15 0 4.37 4.37 0.146 2.185
16 0 4.514 4.514 0.141 2.257
17 0 4.652 4.652 0.137 2.326
18 0 4.787 4.787 0.133 2.394
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19 0 4.918 4.918 0.129 2.459
20 0 5.046 5.046 0.126 2.523
Table 4: pressure Profile for Long flow time ap = 0.5 fom the injection point.

_I[?iim:nless erfcterm | expoterm pd differential derivative
1 0.362 1.06 0.698 0.53 0.53
2 0.401 1.547 1.145 0.387 0.773
3 0.419 1.914 1.495 0.319 0.957
4 0.43 2.222 1.792 0.278 1.111
5 0.437 2.492 2.055 0.249 1.246
6 0.443 2.735 2.293 0.228 1.368
7 0.447 2.959 2.512 0.211 1.479
8 0.45 3.167 2.716 0.198 1.583
9 0.453 3.362 2.909 0.187 1.681
10 0.455 3.546 3.091 0.177 1.773
11 0.458 3.721 3.264 0.169 1.861
12 0.459 3.889 3.429 0.162 1.944
13 0.461 4.049 3.588 0.156 2.024
14 0.462 4.203 3.741 0.15 2.102
15 0.464 4.352 3.888 0.145 2.176
16 0.465 4.496 4.031 0.14 2.248
17 0.466 4.635 4.17 0.136 2.318
18 0.467 4.771 4.304 0.133 2.385
19 0.468 4.902 4.435 0.129 2.451
20 0.468 5.031 4.562 0.126 2.515

pd, tdpd

pressure and pressure derivative profile for

xd=0
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Figure 1: Dimensionless Pressure Drop profile for injectaint x, = 0.
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semilog plot of pd vs td, xd =0
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Figure 3: pressure derivative profile &t = 0.
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Fig. 3: Log-log plot of pressure and pressure derivatinadiles
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pressure and derivatve profile, xd =0
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Fig. 4: Dimensionless Pressure and Derivative Profileg,at 0.0

Pressure profile, xd = 0.5
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Fig. 5: Dimensionless Pressure and Derivative Profiles,at 0.5
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