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Abstract 
 
A multidimensional mathematical model derived by combining equation of 

continuity and Darcy’s law and solved using the strongly implicit procedure (SIP) has 
been used to study the effects of permeability distribution, shape of the relative 
permeability and capillary pressure curves, ratio of water to oil viscosity, and amount of 
connate water on the shape of the water saturation profiles, the time of water 
breakthrough and the cumulative oil recovery from a water flood project. 

The effects of the various parameters on the oil recovery efficiency (the fraction of 
the initial oil in place that can be economically recovered) have been studied with 
respect to linear flow as well as for a five-spot pattern. The computer model described in 
this paper is capable of handling both patterns by mere alteration of the injection data. 

The study shows that the parameters considered have much influence on the 
efficiency of oil recovery from a porous material.  

 

1.0 Introduction 
Since the accidental discovery of water flooding in the Pitthole City area, Western Pennsylvania [1], as  a means of 

increasing the oil recovery, there have been numerous studies on how to maximize the amount of oil production from a given 
water flood project. These studies can be broadly classified as experimental, analytical, statistical or numerical. 

Most experimental studies could not simulate the water saturation gradient behind the flood front. The more successful 
ones that overcame this problem were limited to homogenous systems. The investigators using the analytical tools derived 
mathematical equations that simulated the multiphase flow encountered in oil reservoirs. However, to solve the resulting 
equations, these investigators assumed common, regular geometric patterns. Most of these analytic techniques are even 
limited to homogenous reservoirs. More recently, statistical methods have been used to relate the oil recovery efficiency to 
such reservoir parameters as porosity, permeability, thickness, connate water saturation and oil viscosity. These correlations 
have been made by studying the reservoir at a specific geographical location. The probability that result obtained in this 
manner will apply well to reservoirs in other geographical locations is very small. The numerical techniques are the most 
versatile of the available methods. They are capable of relating oil recovery efficiency to all reservoir properties, water 
injection rates and injection well patterns. 

In this study, the SIP technique developed by [4] for solving partial differential equations encountered in 
multidimensional heat conduction and introduced into the oil industry by [5] has been used  to investigate the effects of 
permeability distribution, shape of the relative permeability and capillary pressure curves, the ratio of water-to-oil viscosity 
and the connate water saturation, on the shape of the water saturation profiles, the time of water breakthrough and the 
cumulative oil recovery from a water flood project. SIP is fast and insensitive to rounding errors in machine computations.. 
The ratio of water present in the slab plus water produced to the cumulative water injected (material balance check) was used 
as a criterion of accuracy of the five-spot pattern. For a water-to-oil viscosity, ratio of 1.5, material balance check on the 
porous slab used in this report varied between 1.006 and 0.9904 for a total injection of 0.16 pore volumes. The same slab was 
treated as a five-spot pattern in which water was injected at four corners and oil produced from the centre. Material balance 
figures were in the range on 1.0000 to 0.9994 for the same cumulative water injection of 0.16 pore volumes. By injecting 
water into al cells at one side of a five spot pattern and producing from all cells at the opposite side, the five spot pattern 
becomes a linear pattern. The accuracy of results from the computer model was further tested 

with results from the linear model.  The accuracy of a result from the linear case was determined by comparing the 
cumulative water injected into the system up to the time of breakthrough with that from Buckley-Leverett [2] model. There 
was a good agreement between both values.  
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2.0 The Model 
2.1 Equations of Two Phase Flow 
 The combination of Darcy’s law and equation of continuity for simultaneous flow of water (denoted with subscript 
w) and oil (denoted by subscript o) yield the following equations[5]: 
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If we invoke an assumption of no phase transfer between all fluids present in the porous material[4], we have, for a two-
dimensional system, the following equations: 
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With initial conditions (I.Cs) as follows: 
Pw (x, y, 0) = CC1 atmosphères 
Po (x, y ,0) = Pw(x, y, 0) + P(x, y, 0) = CC1atm + CC2 atm 
Where Pw is the pressure in the water phase, Po, the pressure in the oil phase, Pc, the oil – water capillary pressure and 

CC1 and CC2 are specified constants. Where the initial value of water saturation is given, the corresponding Pc (x, y, 0) is 
computed by the computer program from the capillary pressure versus water saturation relation.   

A closed boundary was imposed on all sides of slab. The resulting eight boundary conditions (B.Cs) can then be 
expressed as: 
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where I and J are the number of grid blocks in the x and y directions respectively. 

2.2      Finite Difference approximation of Equations of Two Phase Flow 
Difference operators were used to transform equations 2 a and 2 b to finite difference equations. The partial derivatives that 
occur in the left hand side of both equations was transformed to difference equations by the central difference operator 
defined by [3] as:  
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The partial derivatives that occur in the right hand side of both equations was transformed to difference equations by the 
forward difference operator defined by [3] as: 
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The finite difference of equation 2a is: 
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This equation can be written in compact form as: 
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An equation similar 2d, can be written for the oil phase equation (2b). 

 The difference between the left and the right hand sides of equation 2d. for some assumed values of pressures that 
are not correct gives a finite residue, R w I , j. Let us introduce an iteration counter, k. Also let us assume some values of 
pressure for the flow of water at the k th iteration. If the assumed values of the pressure are not correct, there results a finite 
residue, R w I , j k.  Then, equation 2d can be written as: 
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 An equation similar to (2f),  can be written for the oil phase. When the equations for two phases are combined, they 
take the form: 
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J equations, whose  coefficients arranged in matrix form, form a penta diagonal matrix as in equation (2 h).. 

























































































































































−

−

−

−

−

=

∆

∆

∆

∆

∆

J,IR
    

     
    

j,iR

2,1R
     

1,2R

1,1R

J,IP
    
    

  
j,iP

2,1P
  

1,2P

1,1P

  

 I,J     EI,J         DI,J    B                    
      

I,JF       
  

i,jH    i,jF    i.jEi,jDi,jB

2,1H2,1F2,1E2,1D2,1B

1,2H1,2F1,2E1,2D

1,1H1,1F1,1E

M

M

M

M

M

M

M

M

OOO

OOO

OOOO

    . (2 i) 

Where, 

          























++∆

++∆

=∆
1k , 1n

j , oiP

1k , 1n
j , wiP

j,iP                                                 (2 i. 1) 

          























++−

++−

=−
1k , 1n

j , oiR

1k , 1n
 j, wiR

j,iR
                                                                (2 i. 2) 

             





















=
 j , oiBB     0

0 j , wiBB

j,iB
                                                         (2 i. 3) 

             





















=

j , oiDD         0

0j , wiDD

j,iD                                                          (2 i. 4) 

 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 369 – 386    



 373 

A theoretical parametric study of Water Flooding             Peter Ohirhian       J of NAMP 

5) i. (2  

t

1

cP
wS

oBj,oi
FF

j,oi
DD

j,oi
BB   

t

1

cP
wS

oB

t
1

cP
wS

wB
   

t

1

cP
wS

wBj,wi
HH

j,wi
FF

j,wi
DD

j,wi
BB

   j , i E







































































































∆∂

∂φ−++−
∆∂

∂φ−

∆∂
∂φ−















∆∂

∂φ−++−

=  

            





















=

j,i o FF0

0j,i wFF

j,iF
                                                                        (2 i. 6)                              

          





















=

j,i o HH0

0j,i wHH

j,iH                                                                          (2 i. 7) 

The absolute permeability j,2/1ik +  is expressed as a harmonic mean between the i th and (i+1) th grid blocks. 
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Where, w is some weighing factor. W was arbitrarily taken as 1/2 in the model, so that krw i+1/2  ,  j can be expressed as: 

  ,   1 ,   
 1/2 , 2

k krw i j rw i j
krw i j

+ +=+
                                                         (2 i. 10) 

which is the arithmetic average of the two values of the relative permeability in the blocks i and (i+1). A similar treatment is 
given to the values of the oil relative permeability. 

Equation (2 i) is arranged in the form that can be solved by the strongly implicit procedure (SIP) relaxation method 
of [4].  SIP was used in this study. Details of SIP can be found in the original work. 
 
3.0 DATA USED FOR THE STUDY 
3.1 Porous slab 

Length : 40cm 
Width : 40cm 
Thickness: 1.0cm 
Porosity 0.375 fraction 
Absolute permeability: Varied between 0.5 and 9.28 
Relative permeability curves: Figure 1 
Capillary pressure curve:  Figure 1 
 

3.2 Fluid properties 
Water: 
B w : 1.0 
Viscosity: Varied between 1.5 and 5.0 centipoises 
Initial water saturation: 0.125 or 0.25 
Initial water pressure: 0.5 and 10 atmosphere 
Oil: 
B o : 1.0 
Viscosity: 1.0 centipoise 
Initial oil pressure is computed by the computer program. 
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3.3 Rate of water injection :     0.0015cc per second per unit volume 
Dimensions of grid blocks:    4.0 cm by 4.0 cm 
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Figure 1: Capillary and Relative Permeability Curves used for the first part of this study 
 

3.4 Selection of the size of time step and grids 
In order to save computer time, the time step size (∆t) of 20sec was used together with the injection rate of 0.0015 cc/unit 
volume the space increment values (∆x and ∆y) were set at 4.0cm. The use of this large time step was made possible due to 
the semi-implicit consideration of the water and oil mobilities. To see if the computation was stable at this value of ∆t ,  a 
smaller time step  (10 seconds) was  used to re-run the program while keeping the same values of ∆x and ∆y. Water 
saturation profiles from the two runs matched very closely. The compassion is shown in Figure 2. The dimensionless distance 
in Figure 2 is obtained as follows:  
Let I represent the total number of grid y direction; then 

 Dimensionless distance in x direction = 
xI
i

 x

∆
 

 Where i x  = 0, x∆ , 2 x∆ , 3 x∆ , ………….. I x∆  

 and dimensionless distance in y direction =  
yJ
i

 y

∆
 

 where,  i y  = 0, ∆ y, 2∆ y, 3∆ y, …………… J ∆ y 

 The small values of ∆ x and ∆ y were chosen in order to reduce the numerical dispersion present in 
numerical computations. The value of 4.0cm was chosen after a run had been made with ∆ x and ∆ y taken as 8.0cm. The 
saturation distribution for the case of grid size of ∆ x and ∆ y equal to 8.0cm looked different from the case of ∆ x and ∆
y equal to 4.0cm. Numerical dispersion of the case of ∆ x and ∆ y equal to 4.0cm was considered acceptable after 
comparing the results from the program with those obtained by the Buckley-Leverett method in the linear flow case. 
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Figure 2: Comparison of saturation contours for two values of time step 

4.0    Evaluating The Effects Of A Parameter 
 

In order to evaluate the effects of a chosen parameter on the shape of the water saturation profiles, the time of water 
breakthrough and the cumulative recovery, a standard run was made with a chosen value of the parameter of interest. By 
making other runs with an altered value of the parameter and comparing results with that of the standard run, the effect of the 
required parameter can be visualized. The various comparisons made are described below. 

 
4.1 Studies With The Linear Model. 

Although capillary forces are not considered in the Buckley-Leverett method, we can have some idea on the 
accuracy of the results from the program by comparing them with corresponding values computed by the use of the Buckley-
Leverett [2]  method. 

The integrated form of the Buckley-Leverett equation is: 
 
       

SWdS
WdF

AL
iW φ=                                  …………………………………….        (3.1) 

where  
        Wi = total amount of water entering the system 
         L = total length of the system 
         S = subscript denoting shock front 

Figure 3 shows the graphs of Fw and dF w/dSw versus Sw.by use of data shown in Fig. 1  
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Figure 3: Graphs of Fw and dF w / dSw versus Water Saturation (Sw) 

W i was obtained from evaluation by evaluation of equation 3.1 as: 
 

          cciW 7.36
627.1

404375.0 =××=
 

 
The average water saturation at the time of water breakthrough (Swbt) is read from Fig xxx as 0.73. Results from the program 
show that breakthrough of water occurs after 36.48cc of water have been injected into the slab. At this stage, the water 
saturation in the production block was 0.569 (fraction) and the average saturation behind the production block was calculated 
as 0.639 (fraction). The amount of water injected (Wi) from this study is close to the corresponding value obtained by the 
Buckley-Leveret method but there is disparity between the corresponding values of Swbt.  
 Equation (3.1) can be rearranged to solve for the distance a plane of fixed saturation moves (X Sw) after some known 
of water has been injected into the system: 
 
           

WS
WdS
WdF

A
iW

SWX














φ=                            ……………………………….           (3.2) 

 
 The various values of X SW are plotted against SW together with saturation profile from the program in Fig 4 where 
the disparity between the shock front saturation and the average water saturation behind the front obtained Leverett method 
and those from the study is clearly shown. 
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Figure 4: Disparity between shock front profile of Buckley-Leveret and that of this study. 

Effect of water to oil viscosity ratio 
 The linear model was used to study the effect of water to oil viscosity ratio. The ratio was set at 1 for the standard 
run. Another run with the ratio set at 1.5 was made. Figure 5 shows corresponding profiles for the second case. Figure 6 
shows cumulative oil production from the two cases plotted together. 
 

 

Figure 5: Saturation Distribution (Water / Oil viscosity ratio=1.0) at various values of cumulative Water injection  

 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 369 – 386    



 378 

A theoretical parametric study of Water Flooding             Peter Ohirhian       J of NAMP 

 

  

Figure 6: Saturation Distribution (Water / Oil viscosity ratio=1.5) at various values of cumulative Water injection  

 

 

Figure 7: Effect of changing Water / Oil viscosity on cumulative Oil Recovery (results from linear model) 
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4.2 Studies With The Five Spot Model 
 Studies with the five spot water flood pattern were conducted with two sets of capillary and relative permeability 
curves. The first set of curves is that shown in Figure 1. This set of curves was also used for the linear study. The second set 
of curves is shown in Figure 14. Studies with this set of curves are discussed where the Figure is presented. The curves in 
Figure 1 were used for the standard run. Other data used for the standard run are:  

 
             The data for the standard run for studies with the five spot models are: 
  Absolute permeability:  9.28 darcys 
  Connate water saturation:  12.5 percent 
  Water-to-oil viscosity ratio: 1.5 
It took 13120 seconds to water out the slab in the standard run and material balance figures were in the range 0.992917 – 
1.00623. 
 Table 1 shows the effect of various properties of a five spot water flood on the cumulative oil production by the use 
of the first set of capillary and relative permeability curves. The properties considered are 

1. Connate water saturation 
2. Water to oil viscosity ratio 
3. Anisotropy 
4. Equal water injection at four connects of the five spot 
5. Unequal water injection at four connects of the five spot  
6. Shape of Capillary and relative permeability curves  

The stared (***) values in Table 1 are runs in which the porous slab was completely watered out. That is; maximum water 
saturation was attained in all grid blocks. 
 

4.2.1 Effect of connate water saturation 
 A run with connate water saturation of 25 percent was made. Fig 8 shows the saturation contours from this run with 
compared with those from the standard run. Table 1 shows cumulative oil recovery data for various runs including this case. 
The Table shows that breakthrough will occur earlier in this case and that more oil will be recovered from the standard run. 
For the Run shown in Figure 8, material balance ranged from 0.9920990 to 1.000623, over the duration of 10560 seconds it 
took to water out the slab. 
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4.2.2 Effects of water-to-oil viscosity ratio 
 Fig 9 shows that comparison of saturation contours from a run with water-to-oil viscosity ratio equal to 5.0 with 
those of the standard run. From this figure and Table 1, we observe that more oil would be recovered (for any given pore 
volume of water injected) from the present case than from the standard run.  Also, more time is required to water-out the slab 
in this case of favorable mobility ratio. Material balance was in the range 0.944608 – 1.000443 and slab was not completely 
watered out.  
4.2.3 Effects of Anisotropy 
 In this run, the value of absolute permeability in the x direction (kx) was set at 9.28 darcys and that in the y direction 
(ky) at 0.928 darcys. The saturation profiles after 0.32 pore volumes of water have been injected into the system are shown in 
Figure 10. The diagram shows direction of flow favoring the x direction as streamlines search for the path of least resistance. 
Figure 11 reveals the contrast between the diagonal cross- sections of the anisotropic case and the corresponding cross-
sections from the standard run. Cumulative oil recovery from the anisotropic case is also shown in Table 1. From the Table, it 
is seen that the cumulative oil recovery from the anisotropic case is less than corresponding recoveries from the standard run 
(at a given value of cumulative water injection). 
 Range of material balance was 0.991456 to 1.000380 over 10600 the program was executed. 
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Figure 9: Comparison of saturation contours after 
cumulative water injection of injection of 0.320 
pore volumes with corresponding contours of the 
standard run. Solid lines are for the case of 5.0 
water to oil viscosity ratio. 

Figure 8: Comparison of saturation contours after 
cumulative water injection of 0.320 pore volumes 
with corresponding contours of the standard run.  
Solid lines are for the case of 25 % connate water 
saturation 
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4.2.4 Effects of taking a five-spot with equal injection at four corners 
 In this run, the rates of water injection at the four corners of the pattern were considered equal and were set at 
0.0015 cc / sec per unit volume of the injection block at each corner. Production rate from the centre of the slab was set equal 
to the sum (that is, 0.0060 cc / sec per unit volume of the cell block) of the amount injected at each of the four corners. Figure 
12 shows the water saturation profiles after injecting 0.32 pore volumes of water into the system. The figure shows a four-
fold symmetry that is expected of it. The connate water saturation from this case was 25% so that the standard run for 
comparison is the quadrant injection with 25% connate water saturation.  
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Figure 12:  Saturation contours at cumulative water 
injection of 0.320 pore volumes. Case of Five –Spot 
with equal rate of injection (0.0015 cc / sec) at the 
four corners. 

Figure 13:  Saturation contours at cumulative water 
injection of 0.320 pore volumes. Case of Five –Spot 
with unequal rate of injection at the four corners. 

 

Figure 11:  Cross-section a – b for three values of   
cumulative water injection (pore volumes) compared with 
corresponding cross-sections of standard run. Solid lines 
are for anisotropic case. 

Figure 10:  Saturation contours at cumulative 
water injection of 0.320 pore volumes for the 
anisotropic case.          
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Table 1 shows that breakthrough occurs earlier in this case than for the standard run. It also shows that more oil will be 
recovered in this case. Both effects could be due to closer well spacing resulting in higher flushing rate. Another deduction 
from Table 1 is that more oil is produced beyond breakthrough in this case than for the standard run. 1.584 pore volumes are 
required to water out this system as against the 0.422 pore volumes required by the standard run. Maximum water saturation 
in the production block was 67.46% for this case while it was 54.7% for the standard run. The average water saturation at the 
time of complete flushing was 68.4%. This value of water saturation is closer to the expected field residual oil saturations 
(from water flooding) which usually range between 25 and 40 percent. Material balance was in the range 0.960258 – 
1.000000 over 9900 seconds it took to water out the slab. This shows a fair accuracy. Another advantage of the present 
configuration is that it can be used to study the field case where water is injected at unequal rates into the various wells. 
This case of unequal injection is considered next. 
 

4.2.5 Effects of taking a five-spot with unequal injection at four corners 
 In this run, the injection rates at each of the left hand corners was 0.0030 cc / sec per unit volume of the injection 
block while that at each of the right hand corners, 0.0015 cc / sec per unit volume of the injection block. 
 Saturation contours after 0.32 pore volumes of water have been injected into the slab are shown in Figure 13. There 
is no longer symmetry of saturation contours. 
 Cumulative oil recovery data for this case are also shown in Table 1. Cumulative oil recovery at any stage of water 
injection (before the slab is watered out in the present run) is higher in this case as compared with the case of equal injections 
at the four corners. However, in the present case, the slab is watered out much sooner. It took 5340 seconds to water out the 
slab and material balance figures were in the range 0.998650 – 1.003800. This results in less overall recovery in the present 
case compared to the case of equal injection rates. 
 

4.2.6    Effects of the shape of relative permeability and capillary pressure curves 
The relative permeability and capillary pressure curves shown in Figure 14 (also called the second set of Capillary 

and Relative Permeability curves at the beginning of this section), were used for this run, and the slab was considered as a 
quadrant of a five-spot with one injection well and one production well.  
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Figure 14: Effect of shape of Capillary and Relative Permeability Curves. 
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Because of the fairly high capillary pressure, the initial water pressure was set at 10 atmospheres and the initial 
water saturation at 25%. Other data were as for the five-spot with 25% connate water saturation and that run was used as the 
standard for comparison. A comparison of saturation contours from this case with those from the standard run is shown in 
Figure 15. 

The Figure shows that water travelled faster in this case than for the standard run. A comparison of diagonal profiles 
is shown in Figure 16. The profiles from the present case are almost flat, indicating the absence of a ‘shock-front’. The 
absence of the front was confirmed by the shape of the fractional flow curve of the Buckley-Leverett analysis not shown in 
this paper. 

 

 

 

 

 
Cumulative oil recovery from this case is shown in Table 2 together with the corresponding value from the standard run. The 
table shows that there is more oil recovered from this case than from the standard run after a cumulative water injection of 
0.40 pore volumes into both slabs.  
 
Table 2:  Effect of shape of relative permeability and capillary pressure curves on certain properties of a five-spot 

water flood 
 
 
PROPERTIES COMPARED 

FIRST SET OF DATA  
k: 9.28 DARCYS 

5.1 :
o

W
µ
µ

 

INITIAL S W: 0.250 FRACTION 

SECOND SET OF DATA 
k: 9.28 DARCYS 

5.1:
o

W
µ
µ

 

INITIAL S W: 0.250 FRACTION 

Cumulative water injected, pore 
volume 

0.400 0.400 

Cumulative oil produced, pore 
volume 

0.338 0.361 

Water saturation at production 
block at total time considered 

0.539589 0.527060 

Total time considered 10,000 seconds 10,000 seconds 

Range of material balance 0.991090-1.000623 over 
0.4224 pore volumes 

0.785118-1.003592 over 0.4720 
pore volumes 
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Figure 15:  Comparison of saturation contours at cumulative 
water injection of 0.320 pore volumes with corresponding 
contours of the standard run. Solid lines are for case with 
different set of capillary and relative permeability curves 

Figure 16:  Cross-section a – b for three values of cumulative 
water injection (pore volumes) compared with corresponding 
cross-sections of the standard run. Solid lines are for case with 
different set of capillary and relative permeability curves 
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It also shows that water saturation in the production block at 0.4 pore volumes of water injection is 52.71 percent in 

the present case while it is 53.96 percent in the standard run. The value of the water saturation for the present case should be 
higher (since more oil has been recovered from it than in the standard run). A further evidence of the poor accuracy of the 
results from this case is seen in the poor range of material balance exhibited by this run. The material balance range is 
0.785118-1.003592. The poor accuracy is be due to the unusual shape of the oil relative permeability data – it is almost a 
straight line throughout its entire length. 
 
Conlusions 
 
The conclusions made from the entire study are as follows: 
1. The mathematical model used in this report is able to predict oil recovery form a water flood project with reasonable 
accuracy. This accuracy was ascertained by comparing the results of the linear model form this study with analytical results 
obtained by the method of Buckley and Leverett. Also the water saturations obtained at the time the slab is watered- out 
conform to the general trend observed in the field for the five-spot pattern of water flooding. 
2.The model used in this report is well applicable to anisotropic reservoirs. 
3.Oil recovery form water flooding with high ratio of water-to-oil viscosity is higher for the same pore volumes of water 
injected than in the case of the less favorable ratio.Even though, the ultimate volume oil that can be recovered from the 
system will have to be the same in both cases. 
4.A high value of initial water saturation will result in less cumulative oil recovery (at any given  pore volumes of water 
injected) into the system. However, less pore volumes of water (hence  time) are required to flood-out the reservoir. 
5.In stimulating a five spot pattern water flood, it might be better to consider the five-spot with  injection at four corners and 
taking production from the central well than to consider a quadrant of the five-spot with one injection well and one 
production well. Also, the five-spot with four injection wells can be used to simulate flooding with unequal injection rates 
whereas; the quadrant representation cannot be used.  
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