General Equations for the Bubble Point Formation Volume Factor of Crude Oils

Peter Ohirhian

Dept. of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria.

Abstract

General equations for calculating the bubble point formation volume factor of all types of crude oil have been developed.

Unlike present equation used in the oil industry, these new equations do not require the gas gravity of gas that is associated with the crude oil. The new equations are intended to complement the recent general equation (Ohirhian, 2010) for the bubble point formation volume factor of a any type of crude that has a temperature below 220.1 ${}^{0}F$.

The equations were tested with various types of crude oil that have temperatures between 175 and 280 O F. Absolute error between laboratory measured and calculated bubble point formation volume factor varied between 0 -5.1 %.

The equation by Standing (1977) has absolute errors that ranged from 0 - 28% for the same data used to test the new equations.

Keywords: General Equations, Crude Oil, Volume Factor, Bubble Point.

1.0 Introduction

The formation volume factor of a crude oil (BO) is a coefficient that multiplies a unit volume of the crude oil at standard condition (14.7 psia and 60 $^{\text{O}}\text{F}$) to give the actual volume of the crude oil in an oil reservoir. The formation volume factor is usually measured in the laboratory. Laboratory measurement is expensive and time consuming. Frequently approximating equations are used to calculate the formation volume factor. The most widely used equation is that of Standing [5]. The standing equation was developed for the estimation of the bubble point formation volume factor of California crude oil. It can predict the bible point formation volume factor of California crude oil within an absolute error of 4.5 %. When applied to a foreign crude oil, absolute error can exceed 25 %. Later researchers, for example, Glasso [1] modified the Standing equation, so that it can be used for North Sea Oil. The difficulty of developing general equation(s) led some researchers to develop equations that work best for particular oil producing regions. For example, [2, 3] developed equations that work best for Middle East and Nigeria crudes, respectively.

Recently, [4] developed a single equation that is applicable to various types of crude oils. The [4] is limited to a maximum temperature range of 220 $^{\text{O}}\text{F}$. The [4] equation has a maximum absolute error of 6%. Higher errors are encountered at temperatures that exceed 174 $^{\text{O}}\text{F}$. In this study, new general equations that calculate the bubble point formation volume factor of a crude oil that has a temperature that exceeds 174 $^{\text{O}}\text{F}$ are developed. These equations do not require the use of the specific gravity of the associated gas. The equations were developed and tested with the pressure volume temperature (PVT) data of oil companies that operate in Nigeria and the data of [1] for North Sea and miscellaneous crudes. The range of the parameters used is:

API gravity: 22.3 - 48.6 Temperature: 175 – 280 ^oF Gas Oil Ratio: 228 – 2637 SCF / STB.

A Comparison between the measured and calculated values of the bubble point formation volume factor gave an absolute error range of 0 - 5.1 %

The Standing equation has absolute errors that ranged from 0 - 28% for the same data used to test the new equations.

2. Development of the Equations

We empirically found that Oil Reservoirs that exist at temperatures that exceed 174 ^oF can be divided into two broad groups, depending on the ratio of solution Gas Oil Ratio (GOR) to temperature (T). The first group (1) consists of:

$$\frac{\text{GOR}}{\text{T}} \le 4.155$$

Corresponding authors: Peter Ohirhian, E-mail: okuopet@gmail.com, Tel. +2348023394848

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 359 - 368

The second group (2) consists of Oil Reservoirs with:

$$\frac{\text{GOR}}{\text{T}} > 4.155$$

The first group (1) is further divided into two subgroups 1a and 1b. The parameter used to do the sub division is dented by X in this study and is defined as:

 $X = Exp [(RO_1 / SGO s) log(GOR / T)]$

where,

SGOs = Oil relative density at atmospheric pressure (14.7

psia) and standard temperature (60 $^{\rm O}$ F)

 $RO_1 = SGO s / BO_1$

 $BO_1 = 0.968065 + 0.0004203(T / SGO s)$

In this study, the units of GOR and T are SCF and ^{O}F respectively. The first subgroup (1a) is characterised by: X ≤ 1.510

The second subgroup (1b) is characterised by: X > 1.510

The second major group (2) is divided into two subgroups that depend on the value the value of X. The first subgroup is characterised by:

 $X \leq 1.886$

The first subgroup is further divided into two sub- subgroups, 2a and 2b that depend on a value of a parameter denoted in this study by Y, and defined as:

$$Y = RO_1 \times GOR$$

The first sub-subgroup (2a) is characterised by:

$$Y \leq 738$$

The second sub-subgroup (2b) is characterised by:

The grouping is easier to visualise in tabular form. The groups, subgroups and sub-subgroups are shown in Table 1. The second subgroup is characterised by:

This subgroup is further divided into three-subgroups (2a) to (2c) depending the value of the parameter Y. The values of Y for the various sub-subgroups are shown in Table1.

EQUATION	RANGE OF	RANGE	RANGE	RANGE	EQUATION
NO.	Т	OF	OF	OF	
	(^o F)	(GOR/T)	Х	$Y = (RO_1 \times$	
				GOR)	
1a	175 - 280	≤ 4.155	≤ 1.510		BO $_{\rm b} = {\rm BO}_1 - 2.791769 + 0.2030406$
					$\times \ln(API \times T \times GOR)$
1b	175 - 280	≤ 4.155	> 1.510		BO $_{\rm b} = {\rm BO}_12715102 + 0.2441165$
					$\times \ln (X \times RO_1 \times GOR)$
2a	175 - 280	> 4.155	≤ 1.886	\leq 738	BO $_{\rm b}$ = BO ₁ – 4.553860+0.489592
	175 000	4 1 5 5	1.000	720	$\times \ln(\text{API} \times \text{RO}_1 \times \text{GOR})$
26	175 - 280	> 4.155	≤ 1.886	>/38	$BO_b = BO_1 - 8.0659121 + 0.6952427$
2-	175 290	× 4 155	× 1.99C	< 1200	$\times \ln(1 \times GOR)$
20	175 - 280	> 4.155	> 1.880	≤ 1290	$BO_b = BO_1 - 7.7531510 + 0.7959049$
24	175 - 280	> 1 155	> 1.886	1200	\times III (AF1×GOK×KO ₁) BO = BO = 2 31/1160+1 1072281
20	175-280	24.155	> 1.000	1290 -	$bO_b = bO_1 + 2.5141100 + 1.1072281$ × ln (RO, / X)
				1472	$\times \operatorname{III}(\operatorname{KO}_{1}/\operatorname{K})$
2e	175 - 280	> 4.155	> 1.886	> 1472	$BO_{1} = BO_{1} - 11.3117945 + 1.0514493$
					$\times \ln (\text{API} \times \text{RO}_1 \times \text{GOR}) +$
					0.0028883 ×(API×GOR / T)

 $BO_1 = 0.968065 + 0.0004203(T / SGO s)$

 $RO_1 = SGO s / BO_1$

 $X = Exp [(RO_1 / SGO s) log(GOR / T)]$

AP I = American Petroleum Institute degree

GOR = Surface oil to gas (SCF / STB)

T = Temperature in degrees Fahrenheit (⁰F)

SGOs = Oil relative density at atmospheric pressure (14.7 psia) and standard temperature (60° F)

The equations developed in this study for estimating the bubble point formation volume factor of crude oil (BO $_{\rm b}$) are functions of the formation volume factor of the gas free crude oil (BO₁), American Petroleum Institute Degree (^OAPI), Temperature (T), and surface oil gas ratio (GOR). All equations of this study break down to BO₁, if the surface gas oil ratio (GOR) is zero. This is the first advantage of the equations of this study. A second and better advantage is that they make use of the specific gravity of gas that is associated with the crude oil. Ohirhian [3] has developed an equation for BO₁. The equation is:

$$BO_{1} = 0.968065 + 0.0004203(T / SGO s)$$
(1)
where,
$$SGO s = Oil relative density at atmospheric pressure (14.7 psia) andstandard temperature (60 °F)
$$SGO_{s} = \frac{141.5}{^{0} \text{ API} + 131.5}$$
(2)$$

where,

 ^{O}API = American Petroleum Institute degree

The equations developed for the various subgroups and sub- subgroups are shown in Table 1. All equations were obtained by statistical regression The equations were developed and tested with the pressure volume temperature (PVT) data of oil companies that operate in Nigeria and the data of [1] for North Sea and miscellaneous crudes. The data for Nigerian Crude oil used in this study and the corresponding values of the bubble point formation volume factor produced by the equations are shown in Table 1. For the purpose of comparison, the values of the bubble point formation volume factor produced by [5] single equation are shown in the last column of Table 2. The data for North Sea Crude oil used in this study and the corresponding values of the bubble point formation solume factor produced by [5] standing are shown in Table 3. The data for Miscellaneous Crude oils used in this study and the corresponding values of the study and the corresponding values of the bubble point formation volume factor produced by the equations of Standing are shown in Table 3. The data for Miscellaneous Crude oils used in this study and the corresponding values of the study of the equations of this study and the corresponding values of the study and those of Standing are shown in Table 4. The Standing formula is:

 $B_{Ob} = 0.9759 + 12E-5 BOBCN^{1.2}$

where

BOBCN =
$$R_{s}(SG g / SG o)^{0.5} + 1.25T$$

Table 2: Calculation of Bubble Point Formation Volume Factor, This Work and Standing (1977) (Nigeria Crude Oil)

No	⁰ API	T ^o F	SGOs	SGGs	GOR	BO b Experimental	BO _b This work	BO _b Standing (1977)
1	37.8	220	.836	.880	947	1.514	1.532	1.598
2	39.3	175	.828	.847	806	1.515	1.457	1.473
3	40.3	183	.823	.897	1716	1.988	2.080	2.086
4	43.6	212	.808	.976	1834	2.128	2.115	2.261
5	43.1	178	.810	1.011	616	1.460	1.416	1.403
6	43.8	210	.807	1.038	1124	1.746	1.694	1.776
7	36.9	183.5	.840	.814	1034	1.521	1.517	1.599
8	35.5	176	.847	.632	477	1.289	1.289	1.251
9	40.4	183	.823	.755	1716	2.088	2.080	1.990
10	40.4	186	.823	.650	772	1.421	1.494	1.382
11	45.2	186	.832	.790	690	1.441	1.451	1.407
12	40.6	187	.822	.704	1555	1.973	1.902	1.862
13	40.4	190	.823	.709	356	1.299	1.282	1.218
14	40.9	192	.821	.676	823	1.469	1.483	1.447
15	38.8	194	.831	.750	1659	2.147	2.135	1.955
16	36.5	196	.842	.692	1149	1.654	1.596	1.622
17	32.0	198	.816	.676	933	1.572	1.561	1.510
18	48.6	202	.786	.782	1634	2.128	2.055	1.997

No	^O API	Τ ^Ο Γ	SGOs	SGGs	GOR	BO _b	BO _b	BO _b
						Experimental	This work	Standing(1977)
1	42.5	260	.813	.799	1409	1.854	1.864	1.893
2	35.1	230	.849	.759	756	1.442	1.484	1.455
3	38.0	245	.835	.935	1924	2.210	2.200	2.303
4	31.7	230	.867	.980	950	1.589	1.565	1.629
5	39.0	250	.830	.761	1623	1.918	1.920	1.986
6	38.8	180	.835	.732	909	1.434	1.446	1.498
7	38.6	180	.832	.756	1280	1.664	1.715	1.719
8	39.2	210	.829	.946	1039	1.596	1.562	1.674
9	38.5	254	.832	.753	2060	2.186	2.258	2.258
10	42.9	245	.811	.793	1450	1.846	1.890	1.904
11	37.3	270	.838	.721	1361	1.784	1.754	1.815
12	37.4	225	.838	1.049	256	1.218	1.249	1.218
13	36.2	280	.844	.760	2036	2.110	2.053	2.262
14	32.5	270	.863	.894	1950	1.784	1.834	2.289
15	33.6	250	.857	.909	2216	2.160	2.178	2.476
16	34.8	254	.851	.889	2637	2.588	2.574	2.771

 Table 3: Calculation of Bubble Point Formation Volume Factor, This Work and [5]
 (North Sea Crude Oil)

 Table 4: Calculation of Bubble Point Formation Volume Factor, This Work and [5]

 (Miscellaneous Crude Oils)

r		~ ~		(1111)00	maneous	cruue ons)		
No	^O API	Τ ^Ο F	SGOs	SGGs	GOR	BO _b	BO _b	BO _b
						Experimental	This work	Standing(1977)
1	44.8	210	.803	.729	770	1.450	1.486	1.453
2	22.3	211	.920	.650	459	1.230	1.231	1.261
3	34.8	210	.851	1.178	267	1.217	1.219	1.223
4	41.7	230	.817	1.158	853	1.515	1.521	1.632
5	40.8	230	.821	1.033	1258	1.755	1.743	1.878
6	41.5	230	.818	1.023	1124	1.680	1.685	1.781
7	27.9	240	.888	1.248	840	1.593	1.525	1.707
8	28.1	200	.885	.975	891	1.380	1.401	1.561
9	28.4	200	.883	.968	887	1.410	1.398	1.557
10	42.4	235	.814	1.000	1718	1.996	2.016	2.205
11	40.3	223	.824	1.053	1850	2.126	2.153	2.322
12	32.6	200	.862	1.276	228	1.162	1.157	1.198
13	40.4	220	.823	.868	780	1.483	1.492	1.498
14	29.9	220	.881	.973	620	1.382	1.422	1.413
15	48.1	248	.758	.985	1344	1.850	1.902	1.951
16	47.7	249	.790	1.034	1452	1.901	1.958	2.056
17	36.6	242	.842	.710	688	1.498	1.450	1.416
18	37.2	253	.839	.863	326	1.326	1.335	1.259

3.0 Testing of the New Equations

The equations developed in this study are simple. The selection of an appropriate equation is demonstrated by hand working the bubble point formation volume factor of crude oil (BO $_{\rm b}$) of a few reservoirs selected from Tables 2 to 4

Example

Calculate the bubble point formation volume factor (BO $_{\rm b}$) of reservoirs that have the data shown in Table 5.

abic	able 5. Data for sample calculation of Dubble 1 onter of mation volume ractor								
No	^o API	Τ ^Ο F	GOR	SOURCE					
			(SCF / STB)						
1	39.3	175	806	Table 2					
2	43.1	178	616	Table 2					
3	28.4	200	887	Table 4					
4	33.6	250	2216	Table 3					
5	47.7	249	1452	Table 4					

 Table 5: Data for sample calculation of Bubble Point Formation Volume Factor

Solution

1. Specific gravity of oil at standard condition of 14.7 psia and temperature of 60 0 F (SGO s) is:

$$SGO_s = \frac{141.5}{0} = \frac{141.5}{39.3 + 131.5} = 0.828$$

Formation volume factor at 14.7 psia and 175 $^{O}F(BO_{1})$ is:

 $BO_1 = 0.968065 + 0.0004203(T / SGO s) = 0.968065 + 0.0004203 \times (175 / 0.828) = 1.057$

$$RO_1 = SGO s / BO_1 = 0.828 / 1.057 = 0.783$$

Check for major group

GOR / T = 806 / 175 = 4.406

Since, GOR / T > 4.155, this oil falls into the second major group.

Next, check for the subgroup.

Y

$$X = \text{Exp} [(\text{RO}_1 / \text{SGO s}) \log(\text{GOR} / \text{T})] = \text{Exp} [(0.783 / 0.828) \times \log(806 / 175)]$$

= 1.872

Since, X < 1.886, this oil falls into the first subgroup of the second major group.

Next, check for the sub-subgroup.

$$= RO_1 \times SGO = 0.783 \times 806 = 631.1$$

Since, Y < 738, this oil falls into the first sub-subgroup of the first subgroup.. The equation to use is (2a). The equation is:

BO $_{b}$ = BO₁ - 4.553860+0.489592 × ln(API×RO₁ × GOR)

 $= 1.057 - 4.553860 + 0.489592 \times \ln (39.3 \times 0.783 \times 806) = 1.457$ The experimental BO b is 1.515. Absolute error = 2.64 %.

2. Here, O API = 43.1. Thus, SGO s = 0.810

Formation volume factor at 14.7 psia and 175 ${}^{O}F$ (BO₁) is: $BO_1 = 0.968065 + 0.0004203(T / SGO s) = 0.968065 + 0.0004203 \times (178 / 0.810)$ = 1.060 $RO_1 = SGO s / BO_1 = 0.810 / 1.0607 = 0.764$ Check for major group GOR / T = 616 / 178 = 3.46Since, GOR / T < 4.155, this oil falls into the first major group. Next, check for the subgroup. $X = Exp [(RO_1 / SGO s) log(GOR / T)] = Exp [(0.764 / 0.810) \times log(3.46)]$ = 1.662Since, X > 1.510, this oil falls into the second subgroup of the first major group. There is no sub-subgroup in the first major group. The equation to use is (1b). BO $_{b} = BO_{1} - 1.2715102 + 0.2441165 \times ln (X \times RO_{1} \times GOR)$ $= 1.060 - 1.2715102 + 0.2441165 \times \ln(1.662 \times 0.764 \times 616) = 1.415$ The experimental BO_b is 1.460. Absolute error = 3.08 %. **3.** Here, O API = 28.4. Thus, SGO s = 0.885 Formation volume factor at 14.7 psia and 175 0 F (BO₁) = 0.968065 + 0.0004203×(200 / 0.885) = 1.063 $RO_1 = SGO s / BO_1 = 0.885 / 1.063 = 0.833$ Check for major group

GOR / T = 887 / 200 = 4.435

Since, GOR / T > 4.155, this oil falls into the second major group.

Next, check for the subgroup.

 $X = Exp [(RO_1 / SGO s) log(GOR / T)] = Exp [(0.853 / 0.885) \times log(4.435)]$

= 1.838

Since, X < 1.886, this oil falls into the first subgroup of the second major group. Next, check for the sub-subgroup. $Y = RO_1 \times SGO = 0.883 \times 887 = 738.9$

Since, Y > 738, this oil falls into the second sub-subgroup, of the first subgroup. The equation to use is (2b). The equation is:

BO _b = BO₁ - $8.0659121 + 0.6952427 \times \ln(T \times GOR)$

 $= 1.063 - 8.0659121 + 0.6952427 \times \ln(200 \times 887) = 1.400$

The experimental BO $_{\rm b}$ is 1.380. Absolute error = 1.4 %.

4. Here, O API = 33.6. Thus, SGO s = 0.857

Formation volume factor at 14.7 psia and 175 $^{\text{O}}$ F (BO₁) = 0.968065 + 0.0004203× (250 / 0.857) = 1.091 RO₁ = SGO s / BO₁ = 0.857 / 1.091 = 0.786

Check for major group

 $\begin{array}{l} GOR \ / \ T \ = 2216 \ / \ 250 \ = 8.864 \\ \mbox{Since, } GOR \ / \ T \ > 4.155, \ this \ oil \ falls \ into \ the \ second \ major \ group. \\ \ Next, \ check \ for \ the \ subgroup. \\ \ X \ = \ Exp \ [\ (RO_1 \ / \ SGO \ s) \ log(GOR \ / \ T) \] \ = \ Exp \ [\ (0.8786 \ / \ 0.857) \times \ log(8.864) \] \\ \ = \ 2.385 \\ \ Since, \ X \ > \ 1.886, \ this \ oil \ falls \ into \ the \ second \ subgroup \ of \ the \ second \ major \ group. \end{array}$

Next, check for the sub-subgroup.

 $Y = RO_1 \times SGO = 0.786 \times 2216 = 1741.8$

Since, Y > 1472, this oil falls into the third sub-subgroup, of the second subgroup.. The equation to use is (2e). The equation is:

$$\begin{split} BO_b &= BO_1 - 11.3117945 + 1.0514493 \times ln(API \times RO_1 \times GOR) + 0.0028883 \times (API \times GOR \ / \ T) \\ &= 1.091 - 11.3117945 + 1.0514493 \times ln(33.6 \times 0.786 \times 2216) + 0.0028883 \times (33.6 \times 2216 \ / \ 250) \\ &= 1.181 \end{split}$$

The experimental BO_b is 2.160. Absolute error = 0.99 %.

5. Here, O API = 47.7. Thus, SGO s = 0.790

Formation volume factor at 14.7 psia and 175 O F (BO₁) = 0.968065 + 0.0004203×(249 / 0.790) = 1.101 RO₁ = SGO s / BO₁ = 0.790 / 1.101 = 0.718

Check for major group

GOR / T = 1452 / 249 = 5.831

Since, GOR / T > 4.155, this oil falls into the second major group. Next, check for the subgroup.

 $X = \text{Exp} [(\text{RO}_1 / \text{SGO s}) \log(\text{GOR} / \text{T})] = \text{Exp} [(0.718 / 0.790) \times \log(5.831)] = 2.006$ Since, X > 1.886, this oil falls into the second subgroup of the second major group.

Next, check for the sub-subgroup. $Y = RO_1 \times SGO_2$

$$V = RO_1 \times SGO = 0.718 \times 1452 = 1042.5$$

Since, Y < 1290, this oil falls into the first sub-subgroup, of the second subgroup.. The equation to use is (2c). The equation is:

BO $_{b} = BO_{1} - 7.7531510 + 0.7959049 \times ln (API \times GOR \times RO_{1})$

$$= 1.101 - 7.7531510 + 0.7959049 \times \ln(47.7, \times 1452 \times 0.718) = 1.955$$

The experimental BO $_{\rm b}$ is 1.901. Absolute error = 2.84 %.

The use of Standing Formula for the estimation of the BO_b of a North Sea crude oil that has:

^oAPI = 32.5 T = 270 ^oF GOR = 1950 SCF / STB SGGs = 0.895

is as follows.

SGOs =
$$141.5 / (131.5 + 32.5) = 0.863$$

BOBCN = GOR (SGG s / SGO s) $^{0.5} + 1.25T = 1950 \times (0.895 / 0.863) ^{0.5} + 1.25 \times 270$
= 2323.3

BO_b = 0.9759 + 12E-5 BOBCN ^{1.2} = $0.9759 + 12 \times 10^{(-5)} \times 2323.3^{(1.2)} = 2.290$

The experimental BO $_{\rm b}$ is 1.784. Absolute error = 28.4 %.

The performance of the equations of this study on Nigeria crude oil is shown in Table 2. This data came from pressure, volume and temperature (PVT) of oil companies that operate in Nigeria. Also shown in Table 2 are corresponding values from the equation of Standing. The performance of the equations of this study on North Sea crude oil is shown together with the performance of the Standing single equation in Table 3. Table 4 shows the performance of the new equations and the Standing single equation on miscellaneous crude oils. The data shown in tables 3 and 4 came from the article of [1].

Statistical error analysis

The Statistical measures of accuracy used in this study are defined by [6] as:

(a) Percent error (Ei) =
$$\frac{(X_{est} - X_{exp}) \times 100}{X \exp}$$
 (3)

Where:

(b) Average percent error (M.D.) =
$$\frac{\sum El}{N}$$
 (4)

Where, N = total number of samples

(c) Percent absolute error (AE i) =
$$|$$
 Ei $|$ (5)

(d) Average percent absolute error (A.M.D.) =
$$\frac{\sum |Ei|}{N}$$
 (6)

(e) Standard deviation (SD) =
$$\sqrt{\frac{(\sum AEi^2)}{N-1}} - \frac{(\sum AEi)^2}{N}$$
 (7)

The result of error analysis of the new equations on Nigerian crudes is shown in Table 6. The result of error analysis of the Standing equation on Nigerian crudes is shown in Table 7

Table 6: Error Analysis for Nigeria Crude (This Study)

DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR
1	1.514	1.532	-1.189	1.189
2	1.515	1.457	3.828	3.828
3	1.988	2.080	-4.628	4.628
4	2.128	2.115	.611	.611
5	1.460	1.416	3.014	3.014
6	1.746	1.694	2.978	2.978
7	1.521	1.517	.263	.263
8	1.289	1.289	.000	.000
9	2.088	2.080	.383	.383
10	1.421	1.494	-5.137	5.137
11	1.441	1.451	694	.694
12	1.973	1.902	3.599	3.599
13	1.299	1.282	1.309	1.309
14	1.469	1.483	953	.953
15	2.147	2.135	.559	.559
16	1.654	1.596	3.507	3.507
17	1.572	1.561	.700	.700
18	2.128	2.055	3.430	3.430

AVERAGE	PERCENT H	ERROR =		.643	
AVERAGE	ABSOLUTE	PERCENT	ERROR	=	2.043
STANDARI	D DEVIATIO	ON =		2.283	

DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR
1	1.514	1.598	-5.548	5.548
2	1.515	1.473	2.772	2.772
3	1.988	2.086	-4.930	4.930
4	2.128	2.261	-6.250	6.250
5	1.460	1.403	3.904	3.904
б	1.746	1.776	-1.718	1.718
7	1.521	1.599	-5.128	5.128
8	1.289	1.251	2.948	2.948
9	2.088	1.990	4.693	4.693
10	1.421	1.382	2.745	2.745
11	1.441	1.407	2.359	2.359
12	1.973	1.862	5.626	5.626
13	1.299	1.218	6.236	6.236
14	1.469	1.447	1.498	1.498
15	2.147	1.955	8.943	8.943
16	1.654	1.622	1.935	1.935
17	1.572	1.510	3.944	3.944
18	2.128	1.997	6.156	6.156
	AVERAGE PERCENT	ERROR =	1.677	
	AVERAGE ABSOLUT	E PERCENT ERROR =	=	4.296
	STANDARD DEVIAT	2 ION = 4	1.386	

T	ab	le	7:	F	rror	Ana	lysi	s for	Nig	geria	Cru	de ((Stand	ling)	
							•/						\		

The result of error analysis of the new equations on North Sea crudes is shown in Table 8. The result of error analysis of the Standing equation on Nigerian crudes is shown in Table 9

Standing equation	on Nigerian crudes i	is shown in Table 9							
Fable 8: Error Analysis for North Sea Crude (This study)									
DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR					
1	1.854	1.864	539	.539					
2	1.442	1.484	-2.913	2.913					
3	2.210	2.200	.452	.452					
4	1.589	1.565	1.510	1.510					
5	1.918	1.920	104	.104					
б	1.434	1.446	837	.837					
7	1.664	1.715	-3.065	3.065					
8	1.596	1.562	2.130	2.130					
9	2.186	2.258	-3.294	3.294					
10	1.846	1.890	-2.384	2.384					
11	1.784	1.754	1.682	1.682					
12	1.218	1.249	-2.545	2.545					
13	2.110	2.053	2.701	2.701					
14	1.784	1.834	-2.803	2.803					
15	2.160	2.178	833	.833					
16	2.588	2.574	.541	.541					

AVERAGE	PERCENT H	ERROR =		644	
AVERAGE	ABSOLUTE	PERCENT	ERROR	=	1.771
STANDARI	D DEVIATIO	ON =		1.660	

Table 9. Error	Analysis for 100 th Se	a Cruue (Stanung)		
DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR
1	1.854	1.893	-2.104	2.104
2	1.442	1.455	902	.902
3	2.210	2.303	-4.208	4.208
4	1.589	1.629	-2.517	2.517
5	1.918	1.986	-3.545	3.545
б	1.434	1.498	-4.463	4.463
7	1.664	1.719	-3.305	3.305
8	1.596	1.674	-4.887	4.887
9	2.186	2.258	-3.294	3.294
10	1.846	1.904	-3.142	3.142
11	1.784	1.815	-1.738	1.738
12	1.218	1.218	.000	.000
13	2.110	2.262	-7.204	7.204
14	1.784	2.289	-28.307	28.307
15	2.160	2.476	-14.630	14.630
16	2.588	2.771	-7.071	7.071
	AVERAGE PERCEN	Γ ERROR =	-5.707	
	AVERAGE ABSOLU	LE PERCENT ERROR	=	5.707
	STANDARD DEVIA	FION =	8.763	

 Table 9: Error Analysis for North Sea Crude (Standing)

The result of error analysis of the new equations on Miscellaneous crudes is shown in Table 10. The result of error analysis of the Standing equation on Miscellaneous crudes is shown in Table 11

DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR	
1	1.450	1.486	-2.483	2.483	
2	1.230	1.231	081	.081	
3	1.217	1.219	164	.164	
4	1.515	1.521	396	.396	
5	1.755	1.743	.684	.684	
б	1.680	1.685	298	.298	
7	1.593	1.525	4.269	4.269	
8	1.380	1.401	-1.522	1.522	
9	1.410	1.398	.851	.851	
10	1.996	2.016	-1.002	1.002	
11	2.126	2.153	-1.270	1.270	
12	1.162	1.157	.430	.430	
13	1.433	1.492	-4.117	4.117	
14	1.382	1.422	-2.894	2.894	
15	1.850	1.902	-2.811	2.811	
16	1.901	1.958	-2.998	2.998	
17	1.496	1.450	3.075	3.075	
18	1.326	1.335	679	.679	
	AVERAGE PERCENT	F ERROR =	634		
	AVERAGE ABSOLUTE PERCENT ERROR = 1.668				
	STANDARD DEVIAT	FION =	1.795		

Table 10: Error Analysis for Miscellaneous crudes (This study)

DATA VALUE	TRUE VALUE	ESTIMAIED VALUE	ERROR	ABSOLUTE ERROR		
1	1.450	1.453	138	.138		
2	1.230	1.261	-2.520	2.520		
3	1.217	1.223	493	.493		
4	1.515	1.632	-7.723	7.723		
5	1.755	1.878	-7.009	7.009		
6	1.680	1.781	-6.012	6.012		
7	1.593	1.707	-7.156	7.156		
8	1.380	1.561	-13.116	13.116		
9	1.410	1.557	-10.426	10.426		
10	1.996	2.205	-10.471	10.471		
11	2.126	2.322	-9.219	9.219		
12	1.162	1.198	-3.098	3.098		
13	1.483	1.498	-1.011	1.011		
14	1.382	1.413	-2.243	2.243		
15	1.850	1.951	-5.459	5.459		
16	1.901	2.056	-8.154	8.154		
17	1.496	1.416	5.348	5.348		
18	1.326	1.259	5.053	5.053		
	AVERAGE PERCENT ERROR = -4.658					
	AVERAGE ABSOLUTE PERCENT ERROR = 5.814					
	STANDARD DEVIATION = 6.621					

 Table 11: Error Analysis for Miscellaneous crudes (Standing)

The error analysis shows that the new equations can calculate the bubble point Formation Volume Factor of crudes used to develop and test the equations within the following ranges of statistical measures of accuracy.

AVERAGE ABSOLUTE PERCENT ERROR: 0 – 5.14 STANDARD DEVIATION: 1.660 – 2.283

The error analysis shows that the Standing equation can calculate the bubble point Formation Volume Factor of crudes used to develop and test the equations within to following ranges of statistical measures of accuracy.

AVERAGE ABSOLUTE PERCENT ERROR: 0 – 28.31 STANDARD DEVIATION: 4.386 – 8.763

4. Conclusion

Efficient equations for estimating the bubble point formation volume factor of world crude oils have been developed. Absolute error between laboratory measured and calculated bubble point formation volume factor varied between 0 -5.1 %.

References

- [1] Glasso, E.J. (1980). "Generalized Pressure Volume Temperature Correlations", JPT, pp.785-795
- [2] Muhammad Al- Morhoun (1988). "PVT Correlations for Middle East Crude Oils", JPT (May), pp. 650 666
- [3] Ohirhian, P.U. (2009) "Predicting the Bubble Point Formation Factor of Nigerian Crude Oils", Journal of the Nigerian Institute of Production Engineers, vol. 9, No. 1., pp. 242 254
- [4] Ohirhian, P.U. (2010) " A fundamental equation for the bubble point Formation Factor of Nigerian Crude Oils", Accepted for publication in the Journal of the Nigerian Institute of Production Engineers
- [5] Standing, M. B.(1977).Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, Society of Petroleum Engineers. Dallas
- [6] Stroud, K.A.(1982).Further Engineering Mathematics Program and Problems, Macmillan 2nd edition, London, p. 577.