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Abstract

In this paper grid method of continues forward characteristics and rectangular grid
broken backward characteristics is presented, for the solution of saint Venant
equations for free surface flow. The method yield depth and velocity hydrographs at
predetermined distances from which depths and velocity are obtained.  The distance
steps used in this method need not be equal, and may be chosen in such a manner asto
deal with each channel geometry and spatial distribution of lateral inflows. Studies so
far show that there are minimal differencesin accuracy between the direct and iterative
formulation of method.

1.0 Introduction

There are basically two characteristic methodgHersolution of the Saint Venant Equations fore fserface flows [10].
These are the characteristic grid method and tbemgular grid broken characteristic method. Eefcthese methods is
capable of a direct and an iterative formulatiomei [2] used a direct formulation of the charaster grid method for
stream flow routing. Liggett and Woolhiser [7] amdetcher and Hamilton [4] used iterative formwat of the
characteristic grid method for routing overlandafland flood routing in an irregular channel, respwety. Baltzer and Lai
[3] used a direct formulation of the rectangulaidgbroken characteristic method for simulation ofsieady flows in
waterways. The characteristic grid method esdgntiges a grid of continuous forward and backwelndracteristics. The
rectangular grid broken characteristic method asesctangular grid and broken forward and backwhatacteristics. This
paper presents a method that uses specified déstaaned a grid made of continuous forward charatiesi and broken
backward characteristics. Direct and iterativerfolations of the method are detailed and their ates demonstrated.

Saint Venant Equations
The Saint Venant Equations exist in various forr$eir derivations and basic assumptions made \aiable in
the literature [8, 9]. The general form of therBalenant Equations may be stated as follows [6]:

d d dA
AN g YL g, (A =q 1)
dx dx dt dx
Y
ﬂ.,_Xﬂ.;.iﬂ: _S_L (2)
dx gdx gdt gA

in which, at a horizontal distance x from the arigt time t, y = depth of water; A = area of thaevaection; B = width of
channel at the water surface; v = the velocity; lateral inflow per unit length of channel; S = thietion slope;(a% ) =
X

rate of variation of A with respect to x when yhisld constant, S= the bed slope at distance x from origin; and g =
acceleration due to gravity.

Characteristic Form

Equations 1 and 2 may be expressed in characteiosth by the methods given in Refs [1, 4 6] afofwb:
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d
HXov-e (6)
dt

in which ¢ = g% . The compatibility equation (3) holds along piesitor forward characteristics given by equatioh (4

and the compatibility equation (5) holds along nizgaor backward characteristics given by equaf@n The right-hand
sides of equation (3) and (5) are hereafter redeioeas Gand G, respectively, for convenience.

Initial and Boundary Conditions

It is assumed that there is steady flow in thenak&initially. At the upstream boundary, in gealethe conditions
may be subcritical, critical, or supercritical. #hconditions are subcritical or critical, the upams boundary condition
may be given as a discharge hydrograph or a stgdeghaph. When conditions are supercritical, bogllrogaphs are
necessary. In general at the downstream bound&ryconditions may be subcritical, critical, or supiical also. If
conditions are subcritical or critical, a stagecHarge relationship would exist.

Scheme or Calculation

Fig. 1 shows the scheme of characteristics us#lteicalculation. The specified distances at whighand v are to
be calculated are shown by the broken lines, Ay is a continuous positive characteristig, By, As, G,, A4, G; etc are
broken negative characteristics initiated from poiry, Az, A4, etc. If the values of t, y and v are known anp®i4;, A,, As
etc, the solution is first advanced to points 8,, G; etc, by the methods detailed in the sectionsftilmw. The values of
t, y and v at B, B3, By, etc (specified distances) are then determineidteypolation from the values at pointg, B,, Gs, etc.
The calculations are commended from a forward dteristic below the unsteady flow region and adeansuccessively
from one forward characteristic to the next urité tesired time.
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Fig. 1 Point Letting for scheme of Calculation

In advancing the solution from points,/,, As etc to points B G,, G;, etc one of three types of calculations may be
involved at the upstream boundary. These are (&) cbnditions there are subcritical and the slopehef negative
characteristic, AB; is not too large or too small (upstreams and @3s€?) the conditions there are subcritical arapslof
the negative characteristic B, is either too large or too small (upstream en& &@sand (3) conditions there are critical or
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supercritical (upstream end case 3). At the intgumints such as £ Gs;, G, etc the same type of calculations are involved
whatever the conditions. At the downstream endeeitt two types of calculations may arise: (1) Tladitions there are
subcritical or critical (downstream end case 1J| &) the conditions there are supercritical (ddvea@m end case 2).

Iterative Formulations
In the iterative formulations herein, the slopettod characteristics (i.es ¥ G and y — @), the coefficients of the

dy

terms-t (i.e 1 andi) and the terms (&andG are taken as evaluated using mean values ofyx,and v between the
“t %
points concerned. The iteration method used isN#@ton-Raphson iteration method for the solutibsimultaneous non-

linear equations (Appendix 1). Parameter such 8,B,R,N, (GAJ g, and S which occur in the terms &d G or
ox

individually in the finite difference equations kéer are functions of some or all of he variableg;,>and v, and are therefore

known at each stage of the iteration process ®p#rticular values of x, t, y and v being usethat stage.

3 t :
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Fig. 2: Point Letting for Upstream End Case 1, Fig. 3: Point Letting for Upsam End
1, Interior Point and Down-stream Case 2

End Case 1

Upstream End Case 1: The equation to the negative characteristics, BiRthe corresponding compatibility equation are
expressed (Fig. 2) in finite differences and tHfeing equations result:

Xg X~ (% ~%)lg ~tg) =0 ()
yBchB +VBgVB _Gb(tB_tB)zo (8)

If the upstream boundary condition is given assaltirge hydrograph Q(0,t), the following equatitso &olds.
b Q0tg) o 9)
B AR

Equations (7,) (8) and (9) have unknownws, and g and are nonlinear. They are solved by the NewRaphson iteration
method (Appendix 1), assuming starting values obthiby putting ¥ = vg, = Y . If he upstream boundary condition is
given as a depth hydrogaph, then in effect equatjdpand (8) would have two unknownsand  and can be solved by the
New-Raphson iteration method.
Upstream End Case 2: In order to ensure adequate accuracy of the ctatipn (Fig. 3), the time interval AB between
successive forward characteristics originating ftbemupstream boundary should not be large. Likewn order to exercise
some control over the computation time, it may simmes be desirable that AB should not be too smEilese are dealt with
as follows: (1) Choosing oR B as (\ —Ca); (2) values of v, y,t aR are nest determined by interpolation from values
at the grid points along the positive characterisiRA; and (3) the calculations for Upstream Ende€a are then used with
the values atr in place of those at R to determine the values gfand t atB" .
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Upstream End Case 3 - When conditions at the upstream boundary arerstipeal (fig. 4), the positive and negative
characteristics from the upstream boundary aré@srs on the left in the figure. In this case tlepith 3 and velocity ¥ (or
discharge @ have to be supplied at timg 1f conditions are critical the negative charaistér AL will coincide with AB
and g will be a function of y. In this case the timeg is chosen arbitrarily. Equation (9) witR i place of ¥ gives a
nonlinear equation ingywhich can be solved by the Newton-Raphson method.

Fig. 4: Point Letting for Upstream End Case 3, rintePoint, and Down-stream End Case 1

Interior Points- The values x,t , y, and v are known at P an&i§s( 2 and 4). The values at Q are to be cakdilfitst.
The equations to the characteristics PQ and SQhaidcorresponding compatibility equations areresped as follows in
finite differences:

xQ—xp—(vf+cthQ—tp)=0 (10)
)bci_fyp*w‘ef(‘o“p):o )
XQ_XS_(Vb_CbXtQ_tS):O (12)
e el ) @)

The preceding equations have among them four unkadwto, Yo, and ) and are nonlinear. They are solved by
the Newton-Raphson iteration method (Appendix Buasng starting values forgXty, Yo and \ that may be obtained by
putting ¥ = v, G = G, , b = V5, G = G, and evaluating Gat P and Gat S. The values of t, y, and v at the specified
distances such as at T are then obtained by lineapolation from the values at P and Q.

Downstream End Case 1: The values of x,t, y, and v are known at L; athB tinknowns aretyg, and g (Fig. 2). The
equation to the forward characteristic LB and theresponding compatibility equation are expressedofiows in finite
differences

xB—xl_—(vf +cthB—t|_)=O (14)

M+M—Gfﬁs—ﬁ_>:° (15)

i
The following equation is obtained from the dowaam boundary condition.
vg - o (16)
A(yB,XB)

in which @ = the discharge at the downstream end when thin degs. If the downstream end is a free overfall, equrati
(16) reduces togv— g = 0. Equations (14), (15) and (16) have amongthleknowns ¥, vg, and ¢ and are nonlinear.
They are solved by the Newton-Raphson iteration howet (Appendix 1) using starting values

Xp = X
th(B I_)%I_+cl_)+t|_,yl3=yL"’deB=VL'
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Downstream End Case 2: The values at L are calculated as for the intepioint on the assumption that beyond the
downstream boundary, the channel slope, channgbsgand Manning’s N are the same as at A (Fig. A)e values of A’

is then chosen such th&A =BL. The values of y, v, and t & are determined by linear interpolation from théuga at T
and A. The values of x, t, y and v @t are then determined using the calculations fangerior point. If L' falls between

B and L, the procedure is repeated until it fafisthie left of B. The values of y, v, and t at B dhen determined by
extrapolation of the vales at P and If the distance BL is very small, values of tayd v at B may be obtained directly by
interpolation from the values at P and L.

Direct Formulations
Upstream End Case 1: The following equations take the place of equatif), (8) and (9) (see Fig. 2).

Xg ~Xgr ~ (VR —CR)(tg ~tg) =0 (17)

_yB_yR+VB_VR_Gb(tB_tR):0 (18)
CR g

ve- 20 _ (19)
A(yg.0)

The term G is evaluated at R. Equation (17) yielgs tSubstitution for y (from equation 19) in equation (18) yields a
nonlinear equation ingywhich can be solved by the Newton-Raphson metliplation (19) then givesy If the upstream
boundary condition (Fig. 2) is given as a depthrbgdph, ¥ is known at timegt Equation (18) then givegyVv

Upstream End Case 2:All the statements made under the iterative fdatn apply here also.

Upstream End case 3:All the statements made under the iterative foatioih apply here also.

Interior Points — The following equations take the place of equrei(10), (11), (12) and (13).

Xq = Xp~(Wp+e)tg —tr) =0 (20)
ch‘pyp e) ;"p 6yl -t =0 (21)
XQ - Xs - (Vs - Cs(tQ_ts) = O (22)

Q7% 7% (23)

5 ~Gy(tg ~ts) =0
The term Gis evaluated at P and the termiSevaluated at S. Equations (20) and (22) aealiin % and ¢ and are easily
solved. Equations (21) and (23) which are lineaygiand \, are the solved forgyand .

Interior Point just before Downstream End: If conditions at the downstream boundary are stibal, the calculation is
to be as for any other interior point. Howevergahditions at the downstream boundary are criticathange form critical
to supercritical and vice versa, the calculationdeur the iterative formulation are to be sued liis point.

Downstream End Case 1: The following equations take the place of equatiti), (15) and (16).

Xg =% —(v +c )(tg -t ) =0 (24)

yB_yL+VB_VL_Gf (tB_tL):O (25)
L g

vg-— B =g (26)
a(yg: xg)

The term G is evaluated at L. Equation (24) givgs tSubstitution for y (from equation (26)) in equation (25) gives a
nonlinear equation ingthat can be solved by the Newton-Raphson methgdation (26) then givesy

Downstream End Case 2: All the statements made under the iterative fdatian apply here also.

Interpolation between Grid Points

If P and Q are two grids on a forward characterigee Figs. 2 and 4) the valugsyt, and v corresponding to a
specified distance;on the characteristic are obtained as follows: Tfie value oftis first obtained by linear interpolation
from the valuesg and f at %, and x, respectively; (2) it is assumed that y and v Margarly with the characteristic curve
length between the two grid points considered; @)aince the characteristic between P and Q isnasd as a straight line,
y and v may be taken to vary linearly with x oretleen these two points.
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Values at Predetermined Times

The calculations detailed earlier yield values,of,tand v corresponding to predetermined values oft each of
these value of x, values of y ad v can be deterinfoeany predetermined time by linear interpolatiorhus values y and v
can be obtained on any predetermined rectanguthr gr

Stability and Accuracy
Numerical experiments confirm that the new methodtable. It maintains steady-state solutions ssfally (to

within a small fraction of a percentage when thenber of distance steps is large enough). Performintroduced at one
or more points in such a manner that quantity lzaae satisfied, do not produce any instabilityertBrbed steady-state
profiles are found to approach the unperturbeddgtsgate profiles with time.

In the absence of analytical solutions to thexS¥enant equations, the accuracy of any solutemmot in general
be determined precisely. However, it may be saéd ¢hsolution that is to be termed accurate sheati$fy the following
criteria, quantity balance must be satisfied attialles. Large increases in the number of distesteps should produce
negligible changes in the computed solutions agrédl points. Solutions satisfying these criteréa be obtained by the new
method. Computations using the new method hawebssn compared with computations using the iterdtrmulation of
the characteristics grid method. Depths have lobé¢sined at grid points on a predetermined rectanguid using the two
methods. These have been found to agree verylglosall cases that have been studied.

For the purpose of observing quantity balance ramater called herein as the “percentage quantficit! at a
section distant L from the upstream end at tingedeifined as 100D/E in which D and E are

D = J5Q(.t)dt +[5 15 a(x, tyxdt + & Alx, y(x,0]dx

ov(L )AL y(L )t - 15 A(x, y)(x.t)ax (27)

E = 1£Q(0,t)dt + 5[5 q(x.t)dxet (28)

The equation of continuity requires that the petage quantity deficit should be negligible foradlues of t. However,
there are some errors inherent in its evaluatibhese errors are dependent on the time steps atahcé steps used in the
evaluation of the integrals in the expression D BndThus the percentage quantity deficit may oot but t be negligible
even for accurate solutions. Nevertheless it shbeldufficiently small at all times if adequatelyall time and distance
steps are used in its evaluation. In the exanthksfollow time steps of 1 sec have been usethferpurpose. The distance
and standard deviation of the percentage quangiigitlare found to approach zero with decreasthénsize of the distance
steps. In cases where conditions at the upsteratrare a stated under upstream end case 2, dfez af the interval of
time AB' (Fig. 3) is found to have an effect on the peragatquantity deficit, the smaller values f&B' producing smaller
values for percentage quantity deficit. The pet@ga quantity deficit appears to give some indicatdf the relative
accuracy of solutions for the same method and dineesproblem. Continuous monitoring of it throughawomputation
could help to judge the adequacy of the distategssused and the time intervad’ chosen for upstream end case 2.

1.2 T T T T T 1.2 T T ;
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Fig. 5: Depth Hydrographs at Up-stream Fig. 6: Depth Hydrographs at x =12m
End in Example 1 (1m=3.28ft) Brample 1 (1m=3.28ft)
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Applications

For convenience the following abbreviations aredusehis section. The new characteristic mettsokferred to in
its direct formulation by NCE and in its iteratif@mulation by NCI. The iterative formulation dfi¢ characteristic grid
method is referred to by CGIl. A number attachedrtyp of these abbreviations is to be taken to a@etiw number of steps
used in the calculation, e.g. CG140 denotes thatite formulation of the characteristic grid madhusing 40 distance
steps.

Two examples of flood routing are dealt with deling: (1) Conditions at the downstream boundagy aitical
throughout; and (2) conditions as the downstreaobmbary change from critical to supercritical, rémsupercritical for
some time, and then revert to critical. In thetfiexample, computations by NCE5, NCE10, NCE20, B@E40 are
compared with computations by CG140. The diffeesrizetween some of the hydrographs are so smalt thanot possible
to show them visibly with the scale used for thapits. The same line or set of points is therefisel to represent more
than one computed hydrograph. However, the diffiege are shown quantitatively in the tables thédvg through their
mean values and standard deviation. All computatisere done on a IBM360/65 machine.

Example 1. The channel in which the flood routing is done hasection that is circular (radius of 1m) up tdespth of
1.25m and has vertical sides above this. It hesnstant bed slope of 0.005, Manning’s N = 0.0he €hannel discharges
freely at the downstream end and its length is 20m.

Table 1 — Example 1: Percentage Differences betw@&140 Solutions and NCE
Solutions and Percentage Quantitijcide

METHOD

NCE40 NCE20 NCE10 NCES5 CG140

Location 1 Main | Standard| Main Standard| Main Standard| Main Standard| Main Standard
value deviation| value deviation | value deviation | value deviation| value deviation
2 3 4 5 6 7 8 9 10 11

Upstream 0.2310| 0.1231 | 0.1684 | 0.4246 | 0.3205| 0.7399 | 0.7399 | 0.6133
end r=12m | 0.3668 | 0.1795 | 0.2625| 0.7309 | 0.5038| 1.340 1.3490 | 0.6176

Downstream| 0.1576 | 0.1246 0.2044 0.1802 0.2393 0.510p 0.5[796508.
end

Percentage 0.0664 0.0860 0.2091 0.6711 -0.037| 0.064

guantity 0.3942
deficits

0.6616 1.0617 2.2018

A discharge hydrograph is superimposed at the egstrend on a steady flow of 0.8sto give

ot
Q(o,t) = 08+sin—0<t<25
50

Q(Ot)= 18:25<t <50 (29)

5-t
Q1) = 08 +sin >~ Y) 50<t<75
50

Q(O,t) = 0875< t

The following lateral inflow hydrograph is also supnposed over the whole length of the channel

it
g = 006sin - 0<t <50 (30)
g=050<t
The computations are continued up to t = 150 $gs;5, 6 and 7 show the depth hydrographs computedG140, NCEA40,
NCE10 and NCE5 at the upstream end (x = 0), atl2n and at the downstream end (x = 20m), respdgtiviable 1
shows the percentage differences between the dgpittographs by CG140 and the depth hydrogaphs bg490CNCE20,
NCE10, and NCES5 through their mean values and atdndeviations. Table 1 also shows the variatafrthe percentage
qguantity deficits through their mean values anchasad deviations. In this example, conditions ariical at the
downstream boundary throughout.
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End in Example 1 (1m=3.28ft) in Example 2 (1m=3.28ft)
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Fig. 9: Depth Hydrographs at x = 12m Fig. 10: Depth Hydrographs at Dowrestne
in Example 2 (1m=3.28ft) in Example 2 (1m=3.28ft)

Example 2: The particulars of the channel are the same asxample 1. A discharge hydrograph is superimpesedbe
upstream end on the same steady flow to give

. m
Q(0,t)= 08+ 1.2sin oSt
5

Q(0,t) = 2.0;25 < t < 50 (31)

m(75 - t)

Q(0,t) = 0.8+ 1.2sin —————2:50 <t < 75
50

Q(0,t) = 0.8;75 <t

The computations are continued up to t = 150 $égures 8,9 and 10 show depth hydrogaphs compuytét1i 40,
NCE40, NC120, NCE20, NC110, NCE10, NC15, NCE5 atupstream end (x = 0), at x = 12 m and at the don@am end
(x = 20m), respectively. Table 2 shows the peamgmtdifferences between the NC140 depth hydrograptisthe depth
hydrographs by NC120, NC10, NC15 and the percerdagatity deficits through their mean values amehdard deviations.
Table 3 shows the percentage differences betwemiN@140 depth hydrographs and the depth hydrographsCEA40,
NCEZ20, NCE10, NCE5 and he percentage quantity itiefibrough their mean values and standard dewistioln this
example conditions at the downstream boundarywgerscritical from t = 7.27 sec to t=40.27 sec aritical at other times.
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Table 2 —Example 1: Percentage Differences between CG1UQi&ts and NCE
Solutions and Percentage Quantitijcide

METHOD
NCE40 NCE20 NCE10 NCE5 CG140
Location 1 Main Standard | Main Standard | Main Standard | Main Standard | Main Standard
value deviation | value deviation | value deviation | value deviation | value deviation
2 3 4 5 6 7 8 9 10 11

Upstream end 0.0289 | 0.1337 0.0935 | 0.1417 0.3220 | 0.3026 0.9425 | 0.9069
r=12m 0.0082 | 0.1547 0.1107 | 0.1417 0.4520 | 0.2690 1.1930 | 0.8568
Downstream | 0.0822 | 0.1467 0.1332 0.2626 0.2405 0.3602 0.5017467a.
end
Percentage - 0.1592 - 0.1292 - 0.1212 0.1542| -0.1542 - 0.0754
guantity 0.3310 0.3432 0.4726 0.1935
deficits
Table 3: Example 2: Percentage Differences between NGbi@ion and Solutions

by NC120, NC110 and NC15 and PasgnQuantity Deficits

METHOD
NCE20 NCE10 NCE5 CG140
Location Main Standard | Main Standard | Main Standard | Main Standard
1 value deviation | value deviation | value deviation | value deviation
2 3 4 5 6 7 8 9

Upstream enq 0.07911 | 0.1317 0.3711 | 0.4843 0.9935 | 1.0983

r=12m 0.1402 0.1498 0.5352 | 0.5111 1.2365 | 1.0931

Downstream | 0.0318 0.1513 0.1584 0.2436 0.4150 0.3759

end

Percentage -0.2022 0.1230 -0.2939 0.1374 -0.4962 0.2203 -(198.0754

quantity

deficits
Conclusions

In the preceding pages, a characteristic methadubes specified distances and a grid made ofncmonts forward
characteristics and broken backward characterisisdeen presented. The method yields depthedadity hydrographs at
predetermined distances from which depths and itelecon a predetermined rectangular grid can tslyeabtained.
Computations using this method agree very closétli womputations using the iterative formulationtbé characteristic
grid method. The distance steps used in this ndetieed not be equal and may be chosen in suchhaemas to deal most
effectively with the particular channel geometrydaihe spatial distribution of lateral inflows. 8tes so far show the
differences in accuracies between the direct adtive formulation of method to be minimal. Theedt formulation of the
method seems to be more promising than its itexdtivmulation. It is easier to program and takss lcomputing time. The
name “characteristic method of specified distancestggested for this method.

Appendix 1 — Newton-Raphson Iteration [5]

Solutions to sets of nonlinear equations are cditedin the iterative formulations. The maximumnmer of
unknowns involved is four. The following is an ling f the method of solution. Let E, F, G andélfour functions of the
variables x, t, v and y and let solutions be regpliio the following set of equations.

E(x.tv,y)=0; F(xtwvy)=0; G(xtvy)=0(xtvy,)=0 (A1)
Let k denote the iteration number. Taylor expamsion the assumption that.X te1, Vi1, and w.q, and y., are exact
solutions lead to the following equations with tmavention that the function E, F,G and H and tpaitial derivatives
E. E. E., B, R, R, etc are evaluated a, %, v and y

(Xeaq = X1 B * (g =Bt + (eag =By + Vean = Yk)EBy =-E

Piat = X1 P+ (g ~HOR + Veag ~YFy + Oeay = Py = F (A2)
(g = X1 Jox *+ (ieaq =G *+ Mheag =IO + (Viea Yk)Gy = -G

(et = X1 JH * (g =M+ Ghag ~VOHY *+ eaq = YiOHy = -H
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The preceding are four linear equations in unkno@Rs-Xy), (te1 —t), (Vker — W), and (¥+1-Yx) and can be solved
using Cramer’s rule. The iterations are continuetl the values ofi(; — %), (k1 — &), (Vier — W), and (¥.1 — V) are less
than an accuracy criterion. In the examples preskintthis paper, an accuracy criterion of 0.00000Q1 has been used.

Notation

The following symbols are used in this paper:

A = area of water section at distance x from orggitime t;

B = breadth of channel at water surface at digtaritom origin at time t;

c= \M = celerity;
G=%-S -[q(v—% AJ _[\%QA)(a%X)’}
G=%-S -[Q(v+ c)(gAJ +[\%QA)(8%X)};

g = acceleration due to gravity;

N = Manning’s constant;

Q = discharge at distance x from origin at time t;

g = lateral inflow per unit length at distancerarh origin at time t;

R = hydraulic mean depth at distance x from ora@itime t;

So= bed slope at distance x from origin;

S = friction slope obtained from the Manning forart VN%R**K? in which K=1
when Sl units are used and 1.49 when FPS arétused;

t = time;

v = velocity at distance x from origin at time t;

X = horizontal distance from origin (upstream baany; and

y = depth at distance x from origin at time t.

Subscripts
f = positive or forward characteristic; and
b = negative or backward characteristic

Special Symbols

CGI = iterative formulation of characteristic gruethod,;

NCI = iterative formulation of new characteristiethod;

NCE = direct formulation of new characteristic hwd and ;

A number attached to the symbols, CHI, NCI, or N@&notes the number of distance steps in which the
calculations have been done.
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