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Abstract 
 
In this paper grid method of continues forward characteristics and rectangular grid 

broken backward characteristics is  presented,  for the solution of saint Venant 
equations for free surface flow.  The method yield depth and velocity hydrographs at 
predetermined distances from which depths and velocity are obtained.     The distance 
steps used in this method need not be equal, and may be chosen in such a manner as to 
deal with each channel geometry and spatial distribution of lateral inflows.  Studies so 
far show that there are minimal differences in accuracy between the direct and iterative 
formulation of method. 

 

1.0 Introduction 
 

There are basically two characteristic methods for the solution of the Saint Venant Equations for  free surface flows [10].  
These are the characteristic grid method and the rectangular grid broken characteristic method.  Each of these methods is 
capable of a direct and an iterative formulation. Amein [2] used a direct formulation of the characteristic grid method for 
stream flow routing.  Liggett and Woolhiser [7] and Fletcher and Hamilton [4] used iterative formulations of the 
characteristic grid method for routing overland flow and flood routing in an irregular channel, respectively.  Baltzer and Lai 
[3] used a direct formulation of the rectangular grid broken characteristic method for simulation of unsteady flows in 
waterways.  The characteristic grid method essentially uses a grid of continuous forward and backward characteristics.  The 
rectangular grid broken characteristic method uses a rectangular grid and broken forward and backward characteristics.  This 
paper presents a method that uses specified distances and a grid made of continuous forward characteristics and broken 
backward characteristics.  Direct and iterative formulations of the method are detailed and their accuracies demonstrated. 
 
Saint Venant Equations 
 The Saint Venant Equations exist in various forms.  Their derivations and basic assumptions made are available in 
the literature [8, 9]. The  general form of the Saint Venant Equations may be stated as follows [6]: 
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in which, at a horizontal distance x from the origin at time t, y = depth of water; A = area of the water section; B = width of 
channel at the water surface; v = the velocity; q = lateral inflow per unit length of channel; S = the friction slope; ( )

x
A

∂
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rate of variation of A with respect to x when y is held constant, So = the bed slope at distance x from origin; and g = 
acceleration due to gravity. 
Characteristic Form 
Equations 1 and 2 may be expressed in characteristic form by the methods given in Refs [1, 4 6] as follows: 
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cv
dt

dx
−=          (6) 

in which  c = 
B

gA .  The compatibility equation (3) holds along positive or forward characteristics given by equation (4) 

and the compatibility equation (5) holds along negative or backward characteristics given by equation (6).  The right-hand 
sides of equation (3) and (5) are hereafter referred to as Gf and Gb, respectively, for convenience. 
 
Initial and Boundary Conditions 
 It is assumed that there is steady flow in the channel initially.  At the upstream boundary, in general, the conditions 
may be subcritical, critical, or supercritical.  When conditions are subcritical or critical, the upstreams boundary condition 
may be given as a discharge hydrograph or a stage hydograph.  When conditions are supercritical, both hydrogaphs are 
necessary.  In general at the downstream boundary the conditions may be subcritical, critical, or supercritical also.  If 
conditions are subcritical or critical, a stage discharge relationship would exist. 

Scheme or Calculation 
 Fig. 1 shows the scheme of characteristics used in the calculation.  The specified distances at which t, y and v are to 
be calculated are shown by the broken lines.  A1, Ao is a continuous positive characteristic, A3, B1, A3, G2, A4, G3 etc are 
broken negative characteristics initiated from points  A2, A3, A4, etc. If the values of t, y and v are known at points A1, A2, A3 
etc, the solution is first advanced to points B1, G2, G3 etc, by the methods detailed in the sections that follow.   The values of 
t, y and v at B2, B3, B4, etc (specified distances) are then determined by interpolation from the values at points B1, G2, G3, etc.   
The calculations are commended from a forward characteristic below the unsteady flow region and advanced successively 
from one forward characteristic to the next until the desired time. 

        

Fig. 1 Point Letting for scheme of Calculation 

In advancing the solution from points A1, A2, A3 etc to points B1, G2, G3, etc one of  three types of calculations may be 
involved at the upstream boundary. These are (1) the conditions there are subcritical and the slope of the negative 
characteristic, A2B1 is not too large or too small (upstreams and case 1); (2) the conditions there are subcritical and slope of 
the negative characteristic A2 B1 is either too large or too small (upstream end case 2); and (3) conditions there are critical or  
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supercritical (upstream end case 3). At the interior points such as G2, G3, G4 etc the same type of calculations are involved 
whatever the conditions. At the downstream end either of two types of calculations may arise: (1) The conditions there are 
subcritical or critical (downstream end case 1); and (2) the conditions there are supercritical (downstream end case 2).     
 

Iterative Formulations 
 In the iterative formulations herein, the slope of the characteristics (i.e. vf + cf and vb – cb), the coefficients of the 

terms 
dt

dy
 ( i.e 

f
c

1  and

b
c

1 ) and the terms Gf andGb are taken as evaluated using mean values of x, t, y, and v between the 

points concerned.  The iteration method used is the Newton-Raphson iteration method for the solution of simultaneous non-

linear equations (Appendix 1).  Parameter such s c, A,B,R,N, A

x

∂ 
 ∂ 

, q, and S which occur in the terms Gf and Gb or 

individually in the finite difference equations herein are functions of some or all of he variables, x, y, and  v, and are therefore 
known at each stage of the iteration process for the particular values of x, t, y and v being used at that stage. 
 

 

 

 

 

 

 

 

 

 

Fig. 2: Point Letting for Upstream End Case 1,                         Fig. 3: Point Letting for Upstream End      
            1, Interior Point and Down-stream                                              Case 2 
            End Case 1   
 

Upstream End Case 1:   The equation to the negative characteristics, BR and the corresponding compatibility equation are 
expressed (Fig. 2) in finite differences and the following equations result: 

0))(( =−−−− BtBtbcbvBxBx      (7) 
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If the upstream boundary condition is given as a discharge hydrograph Q(0,t), the following equation also holds. 

0
)0,(
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BtQ
Bv

       (9) 

Equations (7,)  (8)  and (9) have unknown yB, vB, and tB and are nonlinear.  They are solved by the Newton-Raphson iteration 
method (Appendix 1), assuming starting values obtained by putting vR = vB, = yR .  If he upstream boundary condition is 
given as a depth hydrogaph, then in effect equations (7) and (8) would have two unknowns vB and tB and can be solved by the 
New-Raphson iteration method. 
Upstream End Case 2:  In order to ensure adequate accuracy of the computation  (Fig. 3), the time interval AB between 
successive forward characteristics originating from the upstream boundary should not be large.  Likewise in order to exercise 
some control over the computation time, it may sometimes be desirable that AB should not be too small.  These are dealt with 
as follows:  (1) Choosing of  BR ′′    as (vA –cA);  (2) values of  v, y, t  at  R′  are nest determined by interpolation from values 
at the grid points along the positive characteristic ARA; and (3) the calculations for Upstream End Case 1 are then used with  
the values at   R′  in place of those at R to determine the values of v, y and t at B ′′ . 
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Upstream End Case 3 -  When conditions at the upstream boundary are supercritical (fig. 4), the positive and negative 
characteristics from the upstream boundary are as shown on the left in the figure.  In this case the depth yB and velocity vB (or 
discharge QB) have to be supplied at time tB. If conditions are critical the negative characteristic AL will coincide with AB 
and vB will be a function of yB. In this case the time tB is chosen arbitrarily.  Equation (9) with cB in place of vB gives a 
nonlinear equation in yB which can be solved by the Newton-Raphson method. 
 
 
 
 

 

 

 

 

 

 

 

Fig. 4: Point Letting for Upstream End Case 3, Interior Point, and Down-stream End Case 1     
                            
Interior Points -  The values x,t , y, and v are known at P and S (Figs. 2 and 4).  The values at Q are to be calculated first.   
The equations to the characteristics PQ and SQ and their corresponding compatibility equations are expressed as follows in 
finite differences: 
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The preceding equations have among them four unknowns (xQ,tQ, yQ,  and  vQ) and are nonlinear.  They are solved by 
the Newton-Raphson iteration method (Appendix 1) assuming starting values for XQ, tQ, yQ and vQ that may be obtained by 
putting vf = vp, cf = cp, , vb = vs,  cb = cs, and evaluating Gf at P and Gb at S.   The values of t, y, and v at the specified 
distances  such as at T are then obtained by linear interpolation from the values at P and Q. 
Downstream End Case 1:   The values of x,t, y, and v are known at L; at B the unknowns are tB, yB, and vB (Fig. 2).  The 
equation to the forward characteristic LB and the corresponding compatibility equation are expressed as follows in finite 
differences 
   ( )( ) 0=−+−− LtBtfcfvLxBx       (14) 
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The following equation is obtained from the downstream boundary condition. 
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       (16) 

in which  QB = the discharge at the downstream end when the depth is yB.  If the downstream end is a free overfall, equation 
(16) reduces to vB – cB = 0.  Equations (14), (15) and (16) have among them unknowns yB, vB, and tB and are nonlinear.   
They are solved by the Newton-Raphson iteration method (Appendix 1) using starting values 
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Downstream End Case 2:   The values at L are calculated as for the interior point on the assumption that beyond the 
downstream boundary, the channel slope, channel section, and Manning’s N are the same as at A (Fig. 4).  The values of  A′  
is then chosen such that AA ′ =BL. The values of y, v, and t at A′  are determined by linear interpolation from the values at T 
and A.  The values of x, t, y and v at L′  are then determined using the calculations for an interior point.  If  L′  falls between 
B and L, the procedure is repeated until it falls to the left of B.  The values of y, v, and t at B are then determined by 
extrapolation of the vales at P and L′ .  If the distance BL is very small, values of t, y, and v at B may be obtained directly by 
interpolation from the values at P and L. 
 
Direct Formulations 
Upstream End Case 1:   The following equations take the place of equations (7), (8) and (9) (see Fig. 2). 
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The term Gb is evaluated at R.  Equation (17) yields tB.  Substitution for vB (from equation 19) in equation (18) yields a 
nonlinear equation in yB which can be solved by the Newton-Raphson method.  Equation (19) then gives vB,   If the upstream 
boundary condition (Fig. 2) is given as a depth hydrogaph, yB is known at time tB. Equation (18) then gives vB. 
Upstream End Case 2:  All the statements made under the iterative formulation apply here also. 
Upstream End case 3:  All the statements made under the iterative formulation apply here also. 
Interior Points  – The following equations take the place of equations (10), (11), (12) and (13). 
    0))(( =−+−− rtQtrcpvpxQx       (20) 
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The term Gf is evaluated at P and the term Gb is evaluated at S.  Equations (20) and (22) are linear in xQ and tQ and are easily 
solved.  Equations (21) and (23) which are linear in yQ and vQ are the solved for yQ and vQ. 
Interior Point just before Downstream End:   If conditions at the downstream boundary are subcritical, the calculation is 
to be as for any other interior point.  However, if conditions at the downstream boundary are critical or change form critical 
to supercritical and vice versa, the calculations under the iterative formulation are to be sued for this point. 
Downstream End Case 1:   The following equations take the place of equations (14), (15) and (16). 
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The term Gf  is evaluated at L.  Equation (24) gives tB.  Substitution for vB (from equation (26)) in equation (25) gives a 
nonlinear equation in yB that can be solved by the Newton-Raphson method. Equation (26) then gives vB. 

Downstream End Case 2:    All the statements made under the iterative formulation apply here also. 

Interpolation between Grid Points 
If P and Q are two grids on a forward characteristic (see Figs. 2 and 4) the values tr, yr, and vr corresponding to a 

specified distance xr on the characteristic are obtained as follows:  (1) The value of tr is first obtained by linear interpolation 
from the values tQ and tp at xQ and xp, respectively; (2) it is assumed that y and v vary linearly with the characteristic curve 
length between the two grid points considered; and (3) since the characteristic between P and Q is assumed as a straight line, 
y and v may be taken to vary linearly with x or t between these two points. 
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Values at Predetermined Times 
The calculations detailed earlier yield values of t, y, and v corresponding to predetermined values of x.  At each of 

these value of x, values of y ad v can be determined for any predetermined time by linear interpolation.  Thus values y and v 
can be obtained on any predetermined rectangular grid. 

 
Stability and Accuracy 

Numerical experiments confirm that the new method is stable. It maintains steady-state solutions successfully (to 
within a small fraction of a percentage when the number of distance steps is large enough).  Perturbations introduced at one 
or more points in such a manner that quantity balance is satisfied, do not produce any instability.  Perturbed steady-state 
profiles are found to approach the unperturbed steady-state profiles with time. 
  In the absence of analytical solutions to the Saint Venant equations, the accuracy of any solution cannot in general 
be determined precisely. However, it may be said that a solution that is to be termed accurate should satisfy the following 
criteria, quantity balance must be satisfied at all times.  Large increases in the number of distance steps should produce 
negligible changes in the computed solutions at all grid points.  Solutions satisfying these criteria can be obtained by the new 
method.  Computations using the new method have also been compared with computations using the iterative formulation of 
the characteristics grid method.  Depths have been obtained at grid points on a predetermined rectangular grid using the two 
methods.  These have been found to agree very closely in all cases that have been studied. 
 For the purpose of observing quantity balance a parameter called herein as the “percentage quantity deficit” at a 
section distant L from the upstream end at time t is defined as 100D/E in which D and E are 

[ ]∫ ∫ ∫+∫ += t L L
o dxxyxAdxdttxqt

o dttQD 0 0 0,(,),(),0(  

( ) ( )[ ] ( )( )∫−∫
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o tLyLAtLv tx,,,,,      (27) 

∫ ∫ ∫+= t
o

t
o

L
o dxdttxqdttQE ),(),0(       (28) 

The equation of continuity requires that the percentage quantity deficit should be negligible for all values of t.   However, 
there are some errors inherent in its evaluation.  These errors are dependent on the time steps and distance steps used in the 
evaluation of the integrals in the expression D and E.  Thus the percentage quantity deficit may not turn out t be negligible 
even for accurate solutions. Nevertheless it should be sufficiently small at all times if adequately small time and distance 
steps are used in its evaluation.  In the examples that follow time steps of 1 sec have been used for this purpose.  The distance 
and standard deviation of the percentage quantity deficit are found to approach zero with decrease in the size of the distance 
steps.    In cases where conditions at the upstream end are a stated under upstream end case 2, the choice of the interval of 
time BA ′  (Fig. 3) is found to have an effect on the percentage quantity deficit, the smaller values for BA ′  producing smaller 
values for percentage quantity deficit.  The percentage quantity deficit appears to give some indication of the relative 
accuracy of solutions for the same method and the same problem.  Continuous monitoring of it throughout a computation 
could  help to judge the adequacy of the distance steps used and the time interval BA ′  chosen for upstream end case 2. 

 
 

 

 

 

 

 

 

 

Fig. 5: Depth Hydrographs at Up-stream                   Fig. 6: Depth Hydrographs at x =12m  
End in Example 1 (1m=3.28ft)                    in Example 1 (1m=3.28ft)  
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Applications 
 For convenience the following abbreviations are used in this section.  The new characteristic method is referred to in 
its direct formulation by NCE and in its iterative formulation by NCI.  The iterative formulation of the characteristic grid 
method is referred to by CGI.  A number attached to any of these abbreviations is to be taken to denote the number of steps 
used in the calculation, e.g. CG140 denotes the iterative formulation of  the characteristic grid method using 40 distance 
steps. 
 Two  examples of flood routing are dealt with following:  (1) Conditions at the downstream boundary are critical 
throughout; and (2) conditions as the downstream boundary  change from critical to supercritical, remain supercritical for 
some time, and then revert to critical. In the first example, computations by NCE5, NCE10, NCE20, and NCE40 are 
compared with computations by CG140.  The differences between some of the hydrographs are so small that it is not possible 
to show them visibly with the scale used for the graphs.  The same line or set of points is therefore used to represent more 
than one computed hydrograph.  However, the differences are shown quantitatively in the tables that follow, through their 
mean values and standard deviation.  All computations were done on a IBM360/65 machine.  

Example 1:   The channel in which the flood routing is done has a section that is circular (radius of 1m) up to a depth of 
1.25m and has vertical sides above this.  It has a constant bed slope of 0.005, Manning’s N = 0.01.  The channel discharges 
freely at the downstream end and its length is 20m. 

Table 1 – Example 1:  Percentage Differences between CG140 Solutions and NCE  
               Solutions and Percentage Quantity Deficits 
 

                                                              METHOD 
 NCE40 NCE20 NCE10 NCE5 CG140 
Location 1 Main 

value 
2 

Standard 
deviation 

3 

Main 
value 

4 

Standard 
deviation 

5 

Main 
value 

6 

Standard 
deviation 

7 

Main 
value 

8 

Standard 
deviation 

9 

Main 
value 

10 

Standard 
deviation 

11 
Upstream 
end  r=12m 

0.2310 
0.3668 

0.1231 
0.1795 

0.1684 
0.2625 

0.4246 
0.7309 

0.3205 
0.5038 

0.7399 
1.340 

0.7399 
1.3490 

0.6133 
0.6176 
 

  

Downstream 
end  

0.1576 0.1246 0.2044 0.1802 0.2393 0.5105 0.5796 0.6505   

Percentage 
quantity 
deficits 

-
0.3942 

0.0664 -
0.6616 

0.0860 -
1.0617 

0.2091 -
2.2018 

0.6711 -0.037 0.064 

 

 A discharge hydrograph is superimposed at the upstream end on a steady flow of 0.8m3/s to give 
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The following lateral inflow hydrograph is also superimposed over the whole length of the channel 

t50 ;0
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50

 
sin06.0

≤=

<≤=

q

t
t

q
π

       (30) 

The computations are continued up to t = 150 sec; figs 5, 6 and 7 show the depth hydrographs computed by CG140, NCE40, 
NCE10 and NCE5 at the upstream end (x = 0), at x = 12 m and at the downstream end (x = 20m), respectively.  Table  1 
shows the percentage differences between the depth hydrographs by CG140 and the depth hydrogaphs by NCE40, NCE20, 
NCE10, and NCE5 through their mean values and standard deviations.  Table 1 also shows the variations of the percentage 
quantity deficits through their mean values and standard deviations.  In this example, conditions are critical at the 
downstream boundary throughout. 
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Fig. 7: Depth Hydrographs at Down-stream                   Fig. 8: Depth Hydrographs at Up-stream        
            End in Example 1 (1m=3.28ft)                    in Example 2 (1m=3.28ft) 
 

 

 

 

 

 

 

 

 

Fig. 9: Depth Hydrographs at x = 12m                            Fig. 10: Depth Hydrographs at Downstream        
             in Example 2 (1m=3.28ft)                                       in Example 2 (1m=3.28ft) 
 

Example 2:   The particulars of the channel are the same as for example 1.  A discharge hydrograph is superimposed at the 
upstream end on the same steady flow to give 
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The computations are continued up to t = 150 sec.  Figures 8,9 and 10 show depth hydrogaphs computed by NC140, 
NCE40, NC120, NCE20, NC110, NCE10, NC15, NCE5 at the upstream end (x = 0), at x = 12 m and at the downstream end 
(x = 20m), respectively.  Table 2 shows the percentage differences between the NC140 depth hydrographs and the depth 
hydrographs by NC120, NC10, NC15 and the percentage quantity deficits through their mean values and standard deviations.  
Table 3 shows the percentage differences between the NC140 depth hydrographs and the depth hydrographs by NCE40, 
NCE20, NCE10, NCE5 and he percentage quantity deficits through their mean values and standard deviations.  In this 
example conditions at the downstream boundary are super critical from t = 7.27 sec to t=40.27 sec and critical at other times. 
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Table 2 – Example 1:  Percentage Differences between CG140 Solutions and NCE  
               Solutions and Percentage Quantity Deficits 
                                   METHOD 
 NCE40 NCE20 NCE10 NCE5 CG140 
Location 1 Main 

value 
2 

Standard 
deviation 

3 

Main 
value 

4 

Standard 
deviation 

5 

Main 
value 

6 

Standard 
deviation 

7 

Main 
value 

8 

Standard 
deviation 

9 

Main 
value 

10 

Standard 
deviation 

11 
Upstream end  
r=12m 

0.0289 
0.0082 

0.1337 
0.1547 

0.0935 
0.1107 

0.1417 
0.1417 

0.3220 
0.4520 

0.3026 
0.2690 

0.9425 
1.1930 

0.9069 
0.8568 

  

Downstream 
end  

0.0822 0.1467 0.1332 0.2626 0.2405 0.3602 0.5017 0.4674   

Percentage 
quantity 
deficits 

-
0.3310 

0.1592 -
0.3432 

0.1292 -
0.4726 

0.1212 0.1542 -0.1542 -
0.1935 

0.0754 

 

Table 3:  Example 2:  Percentage Differences between NC140 Solution and Solutions 
                by NC120, NC110 and NC15 and Percentage Quantity Deficits 
 

                                  METHOD 
 NCE20 NCE10 NCE5 CG140 
Location  
1 

Main 
value 

2 

Standard 
deviation 

3 

Main 
value 

4 

Standard 
deviation 

5 

Main 
value 

6 

Standard 
deviation 

7 

Main 
value 

8 

Standard 
deviation 

9 

Upstream end  
r = 12m 

0.07911 
0.1402 

0.1317 
0.1498 

0.3711 
0.5352 

0.4843 
0.5111 

0.9935 
1.2365 

1.0983 
1.0931 
 

  

Downstream 
end  

0.0318 0.1513 0.1588 0.2436 0.4150 0.3759   

Percentage 
quantity 
deficits 

-0.2022 0.1230 -0.2939 0.1374 -0.4962 0.2203 -0.1935 0.0754 

 

Conclusions 
 In the preceding pages, a characteristic method that uses specified distances and a grid made of continuous forward 
characteristics and broken backward characteristics has been presented.  The method yields depth and velocity hydrographs at 
predetermined distances from which depths and velocities on a predetermined rectangular grid can be easily obtained.  
Computations using this method agree very closely with computations using the iterative formulation of the characteristic 
grid method.  The distance steps used in this method need not be equal and may be  chosen in such a manner as to deal most 
effectively with the particular channel geometry and the spatial distribution of lateral inflows.  Studies so far show the 
differences in accuracies between the direct and iterative formulation of method to be minimal.  The direct formulation of the 
method seems to be more promising than its iterative formulation.  It is easier to program and takes less computing time. The 
name “characteristic method of specified distances” is suggested for this method. 
 
Appendix 1 – Newton-Raphson Iteration [5]  

Solutions to sets of nonlinear equations are called for in the iterative formulations.  The maximum number of 
unknowns involved is four.  The following is an outline f the method of solution.   Let E, F, G and H be four functions of the 
variables x, t, v and y and let solutions be required to the following set of equations. 

E(x,t,v,y)= 0;   F(x,t,v,y) = 0;   G(x,t,v,y) = 0;  H(x,t,v,y,) = 0  (A1) 
Let k denote the iteration number.  Taylor expansions on the assumption that  xk+1, tk+1, vk+1, and vk+1, and yk+1 are exact 
solutions lead to the following equations with the convention that the function E, F,G and H and their partial derivatives 
 Ex, Et, Ev, Ey, Fx, Ft, etc are evaluated at xk, tk, vk and yk 

( ) EyEkykyvEkvkvtEktktxEkx −=−++−++−++−+ )1()1()1(kx1
 

( ) FyFkykyvFkvkvtFktktxFkx −=−++−++−++−+ )1()1()1(kx1
 (A2) 

( ) GyGkykyvGkvkvtGktktxGkx −=−++−++−++−+ )1()1()1(kx1
 

( ) HyHkykyvHkvkvtHktktxHkx −=−++−++−++−+ )1()1()1(kx1
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The preceding are four linear equations in unknowns (xk+1-xk), (tk+1 –tk), (vk+1 – vk), and (yk+1-yk) and can be solved 
using Cramer’s  rule.  The iterations are continued until the values of (k+1 – xk), (tk+1 – tk), (vk+1 – vk), and (yk-1 – yk) are less 
than an accuracy criterion. In the examples presented in this paper, an accuracy criterion of 0.00000000001 has been used. 

Notation 
The following symbols are used in this paper: 
A = area of water section at distance x from origin at time t; 
B = breadth of  channel at water surface at distance x from origin at time t; 
c = 

B
Ag

 = celerity; 

Gf = So – S - ( )
( )( ) ;,

)( 











∂
∂−−

x
A

gA
vc

gA
cvq  

Gb = So – S - ( )
( )( ) ;,

)( 











∂
∂++

x
A

gA
vc

gA
cvq  

g   =  acceleration due to gravity; 
N =  Manning’s constant; 
Q =  discharge at distance x from origin at time t; 
q =  lateral inflow per unit length at distance x from origin at time t; 
R = hydraulic mean depth at distance x from origin at time t; 
So= bed slope at distance x from origin; 
S = friction slope obtained from the Manning formular = v2N2/R4/3K2 in which   K= 1  
      when SI units are used and 1.49 when FPS units are used; 
t = time; 
v = velocity at distance x from origin at time t; 
x = horizontal distance from origin (upstream boundary); and  
y = depth at distance x from origin at time t. 
 
Subscripts 
f = positive or forward characteristic; and  
b = negative or backward characteristic 
 
Special Symbols 
CGI = iterative formulation of characteristic grid method; 
NCI = iterative formulation of new characteristic method; 
NCE = direct  formulation of new characteristic method and ; 
A number attached to the symbols, CHI, NCI, or NCE denotes the number of distance steps in which the 
calculations have been done.   
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