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Abstract 
 
This paper presents an analytical solution for velocity distribution over the entire 

flow depth for open channel or pipe radius.  The concept upon which this solution is 
based, was first introduced by [5] in 1877.    He expressed viscous shear terms of the 
Reynold equation as the product of normal velocity gradient and his mixing coefficient.  
It suggests that the parabolic distribution of turbulent diffusivity should be replaced by 
one for which the rate of change of turbulent diffusivity with distance away from the 
wall is zero at the wall. Since the solutions presented herein include both Laminar and 
turbulent shear, they may be more generally applicable than previous approximate 
solutions.  Velocity defect law and velocity distribution law satisfy the boundary 
conditions for du

dy
  and U at both the flow boundary and at the top of the boundary layer.  

This represents a distinct improvement over the logarithmic equation  
mε

υ
= ∞

  which can 

satisfy only one of these four boundary conditions, and over the power function which 
violates the boundary conditions for du

dy
.   The concept and solutions presented herein 

will be useful in modeling and interpreting velocity distribution in open channel and 
pipe flow. 

 

1.0 Introduction 
 

Previous solutions for velocity distributions of uniform flow in channels and pipes have been obtained for either the fully 
turbulent or the fully laminar regions of the flow.  Experimental data define the transition between thee regions, but because 
of the different flow scales used to characterize the two flow regions, a universal distribution function has not been developed   
The purpose of this paper is to present a new analytical solution for the velocity distribution over the entire flow depth or pipe 
radius. 
 
Analysis 
 The concept upon which this solution is based, was first introduced by [5] in 1877.  He expressed viscous shear 

terms of the Reynolds equations as the product of the normal velocity gradient and his mixing coefficient, mρε  in which ρ  

is the fluid density; and mε  is the eddy viscosity or turbulent diffusivity.  Consideration of the total shear between fluid 

elements as the sum of turbulent and viscous parts leads to the expression of the total shear stress, τ  as 

              ( )
dy

dU
mv ε

ρ

τ
+=        (1) 

in which v = the kinematic fluid viscosity.  For uniform flow with hydrostatic pressure the governing equations require a 
linear distribution of shear stress over the flow depth or pipe radius. 

                                         







−=

ry

y
o 1ττ        (2) 

in which oτ = the shear stress, on the fixed boundary, and yr = the flow depth or pipe radius. 

Combining equations (1) and (2) then gives the well-known force balance equation for uniform flow: 
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in  which U* = the shear velocity defined by 

ρ
τoU =∗        (4) 

A parabolic distributions of turbulent diffusivity has been suggested by data from several investigations [6].  This distribution 

is expressed in terms of the mean diffusivity  

mε  by 
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Equation (5) is simply a parabola giving average value of 
m

m

ε
ε

 over the flow depth or pipe radius.  This equation s identical to 

the classical equation if mε  is defined by 

    
6

rykU

m
∗=ε        (6) 

 Solutions of equation (3) have been obtained for laminar and turbulent cases separately, but a previous solution for 

combined laminar and turbulent shear is not known to the writer. If mε  is negligibly small, equation (3) yields the parabolic 

velocity distribution of purely laminar flow: 

    2
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1
2

nn

ryU

vU
−=

∗

      (7) 

in which n = y/yr.  If µ is neglected, the solution of equation (3) for   
mε , given by equation (5), is the classical logarithmic 

velocity distribution similar to that proposed by Prandtl in 1933 [4]:  
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max nIn

ryU

UUm =
−ε

     (8) 

The complete solution is given in the following for flows with both laminar and turbulent characteristics.  Equation 
(3) is expressed as 
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Substituting equation (5) into equation (9) gives 
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The right side of equation (10) can be expanded as 

( ) ( )



























−+
+

−+

−∈
+

=
+

∗ 266

dn 6

266

126

12

1

2
nn

m

v
nn

m

v

dnnm

v

ryU

dUv

εε

ε
 (11) 

The fraction of the last term of equation (11) can be expressed as 
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in which     D = 
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The fraction denoted by F can then be expressed as the sum of two partial fractions based on its factors: 
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Substituting equation (14) into equation (11) gives 
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Each of the terms on the right side of equation (15) are of the form dz/z so that integration gives 

n

oD
nm

v
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Completing the evaluation of equation (16) at the indicated limits of integration gives 
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Subtracting equation (17) from equation (18) gives the velocity defect form of the velocity distribution: 
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Diving equation (17) by equation (18) gives the ratio form of the velocity distribution: 
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The predicted velocity distributions for selected values of 
m

v

ε
are depicted in Figs. 1 and 2 for the defect and ratio forms of 

the velocity distributions, respectively.  Equation (19) is seen to approach the laminar and turbulent solutions as limiting 

distributions in Fig. 1. As the flow boundary is approached, different curves for different ratios of 
v
m

ε
 are defined. 

    The curves defined by equation (20) become increasingly steep with increasing values of  
v
m

ε
 This illustrates the reason a 

power law function with constant exponent of the form (3). 

     

m

ry
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U

U








=

max

     (21) 

cannot   serve as a general model.  For an m value of 
8

1  and a value of 
v
m

ε
 of 1,000 equations 20 and 21 agree satisfactorily 

over the upper 90% of the flow depth.  A change in the value 
v
m

ε
 would require a change in m to approximate the velocity 

distribution with equation (21). 

 For velocity distributions near a flow boundary, depiction of U* = U/U* as a function 
v

y
Uy ∗=+   is customary 

[1, 2,5].  However, the equations derived herein do not give unique relationships in this format.  Equation (17) can be 
expressed as 
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in which R = U* yr/v = the shear velocity Reynolds number.  Likewise, for purely laminar flow equation (7) can be expressed 
as: 
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−+=+

R

y
yU

2

1
1        (23) 

Equations (22) and (23) suggest that U+ depends on not only y+ but also R and 
m

v

ε
. 

 Actual data for the inner region of the flow indicate that the flow remains more nearly laminar for y+ < 23 than 
equation (22) suggests and experiences the full turbulent effects for larger y+.   These comparisons are depicted in Figure 3 in 
relation to the data used by Diessler [2]. 
 For cases where a more accurate description of the velocity distribution in the inner region is necessary, a semi-
empirical form of equation (23) can be applied for y+ ≤ 23. 
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This equation is the viscous equation for R = 26 but one that seems to account for combined turbulent and viscous effects for 

larger R.  This expression is closely approximated by equation (22) for 
m

v
R

ε
= 100 for y+ less than about 15.  Although 

equation (22) appears to depend on R and 
m

v

ε
 separately, plots for combination of these parameters giving the same product 

are indistinguishable.  For y+ ≥ 23, equation (16) may still be applied with lower limits of 23/R for  y+ and 12.8 for U+ 
replacing the zero limits.  The resulting expression is  

  













































































−+

+−

+
+

−

−
+

+
+

−−

−
+

−

+=+

1
46

1
46

1
2

1
2

1
2

1
462

2

1
22

12

8.12

R
D

R
D

R

y
D

R

y
D

In
D

R
D

R

y
D

In
m

Rv
U

ε
   (25) 

 

 

 

 

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 285 – 290    

 

Fig.2: Ratio Form of velocity Distributions 
Fig.3: Velocity Distribution in inner Region 
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Equation (25) for  
m

v
R

ε
=17 is shown superimposed on the data in Fig. 3.   The distinction between 

m

v
R

ε
 values of 100 

and 17 for the inner and outer flow regions may be interpreted as a rather change in the turbulent intensity experienced by the 
two regions.  It suggests that the parabolic distribution of turbulent diffusivity should be replaced by one for which the rate of 
change of turbulent diffusivity with distance away from the wall is zero at the wall.  A gamma distribution has this property 
but its functional form does not give an analytical solution. 
 Since the solutions presented herein include both laminar and turbulent shear; they may be more generally 

applicable than previous approximate solutions.  Equations (19) and (20) satisfy the boundary conditions for 
dy

dU
 and U at 

both the flow boundary and at the top of the boundary layer.  This represents a distinct improvement over the logarithmic 

equation,   ∞→
v

ε
 in Fig. 1., which can satisfy only one of these four boundary conditions, and over the power function, 

which violates the boundary conditions for 
dy

dU
. 

 The concepts and solutions presented herein should be helpful not only for their academic value but also as aids for 
modelling and interpreting velocity distributions in open channel and pipe flows.  Their applicability should be limited only 
by the requirements of fully developed uniform flow and the assumption of a parabolic distribution of turbulent diffusivity.  
 
REFERENCES 

[1] Cebecci, T. and Smith, A.M.O., Analysis of Turbulent Boundary Layers, Academic Press, Inc., New York, N.Y., 
1974, p. 117. 

[2] Deissler, R.G., “Analysis of Turbulent Heat Transfer, Mass Transfer and Friction in Smooth Tubes at High Prandtl 
and Schmidt Numbers” Technical Report 1210, National Advisory Committee for Aeronautics, 1955. 

[3] Karman, T. von, “On Laminar and Turbulent Friction” Translation by National Advisory Committee for 
Aeronauticcs, T.M. 1092, (Originally published in German in 1921). 

[4] Prandtl, L., “Recent Results of Turbulence Research, “Translation by National Advisory Committee for 
Aeronautics, T.M. 720, (Originally published in German in 1933). 

[5] Schliching, H.  Boundary Layer Theory, 6th ed., McGraw-Hill Book Co., Inc., New York, N.Y, 1968. 
[6] Vanoni, V.A., “Transportation of Suspended Sediment by Water”, Transactions, ASCE, Vol. III, Paper No. 2257, 

1946, pp. 67-133. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 285 – 290    
 


