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Abstract

In this paper a mathematical model to predict the heat transfer in a lime kiln is
presented. We assume the reaction is not well-stirred. We examine the properties of
solution under certain conditions. The governing equations are solved analytically using
high activation energy asymptotics. Results are presented and potential implications are
discussed.
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1.0 Introduction

The primary function of the lime kiln is to convédaCQO, to CaO for reuse in the causticizing process. The process

involves heat and mass transfer between the kilgl, fprimary and secondary air, drying of lime madd calcining of
CaCQ,.

Lime production is a global industry that contriésigreatly to social and economic development girout the world.
Many beneficial industrial and consumer applicati@me made possible by the use of lime. A varidthusiness sectors
including industrial manufacturing, utility suppige and environmental technologies, rely on therdtbility, versatility and
practicality of lime. The mining and distributionf dime stimulates commerce in other business sscwirch as,
transportation, shipping, storage, tooling suppliand heavy equipment suppliers.

A lime shaft kiln is basically a moving bed reactith the upward-flow of hot gases passing counterent to the
downward-flow of a feed consisting of limestone tjgd#s undergoing calcination. A kiln basically hdsee operating
sections: the preheating, the burning and the sgaone. The preheating zone is that part of threvidere the limestone is
heated to its dissociation temperature. The burnong is that part of the kiln in which reactiontibé burden takes place.
The cooling zone is that part of the kiln in whitie lime emerging from the burning zone is coolefbte discharge.

The most common fuels used in shaft kilns are cokéyral gas, weak gas and pulverized lignite Thle majority of
shaft furnaces for limestone calcination operatth wbunter-current flows of burden materials andega(Boynton [2],
Terruzzi [3], Tabunshikov [4] and Monastirev andekRdandrov [5]). The furnace incorporates threerteldgical zones:
preheating, calcination and cooling (from top téttm).

Gordon et al [6] developed the multi-dimensionaltmeaatical model to optimize the furnace design #medprocess
parameters. The developed mathematical model belanthe group of essentially non-linear modelscokding to them, it
is not possible to develop an analytical solutibrihe problem. The finite element method was ugegrovide a solution.
Olayiwola et al [7] developed a mathematical moafekalcination process. The developed model todé& account the
Arrhenius heat generation and chemical reactioreyTprovided an analytical solution of the model ameestigated the
effects of activation energy and Frank-Kamenetskimmeters on the gas and material temperatures.

In this paper we extend the model in [7] to accdanf situation where the reaction is not weltrstl. We examine the
properties of solution under certain conditionsingshigh activation energy asymptotics, we provégteanalytical solution
and investigate parameters involved.

2. Mathematical Formulation
Here, we assume that the reaction is not wellestirthat is, change depends on both time and sjgaiable. We make
the additional assumption that the reaction is isteady-state so that time derivatives are zé%o,: 0 - Under these
ot
assumptions, we arrived at the following steady@nequation
For material:
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The boundary conditions are
T.0)=T, T, ()=T, osxsL (2.3)
T,00=T,. T,(L)=T,, 0sx<L (2.4)

Here, as in [7],0 is density, E is activation energyR is gas constant] is heat source,

Q is heat transfer coefficientd is thermal conductivity,C is heat capacity£ is porosity, T is temperature X is
position, Q is heat of reactionA is pre-exponential factorg is gas,m is material.
3. Method of Solution

Let
E E X RT,
0= T, -T,), ¢= T -T,), X=—, O0=—22
RTOQ( g O) 40 RTOQ( m 0) L E
Then (2.1) and (2.2) become
d 2
Alﬁ—al(e—(pﬁ ﬁ1+51exp(1+mej:0 3.1)
A ﬁ+a(€—¢)+ﬁ +0, exp =0 (3.2)
Zax? ? 2 1+08
together with the boundary conditions
9(0)=p@)=0 (3.3)
6(0)=6@1)=0, (3.4)
where
__a, _ U g =% s_ 9
S e R v (o SR W R} )

E

% 0T -,

E
) QAGXF{‘RTJ

is the Frank-Kamenetskii parameter for material

52 = is the Frank-Kamenetskii parameter for gas
UTo0,6C,
. An is the scaled material thermal conductivity forteneal
pn(l-€)C,L?
/]g
/]2 = ———— Iis the scaled gas thermal conductivity for gas
PyEC,L

3.1 Properties of Solution
Theorem 3.1
1
Leta, =a, =0 and A, = A, =11in(3.1) and (3.2). Theﬁ(x) and ¢(X) are symmetric abouX = E

Proof: Leta; =@, =0 and A, = A, =1 in (3.1) and (3.2). We obtain
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Q.

¢( ) + 9, exp(1+ D(H)(X)J =0. ¢(0)=0, ¢@)=0
d®a(x) , 3, exp( (X)(X)j B,=0, 6()=o, 6@)=0

dx?

Let z=2x-1
Then

d? d?

dx? dz?

So the problem becomes

%dzz)+%exp(i)ﬁ+—l=o, ¢(—1):O, ¢(1):0

1+06(z)) 4
%EZ) +%ex{—1+6m’(z)(z)] +% =0, 6(-)=0,  6@)=0

It suffices to show thaG(— Z) = H(Z) and ¢(— Z) = ¢(Z).
Replacez by — z. We obtain

IR RN

d(- 2y 1+06(-2)) 4
d?6(- 2) +iex{ﬂj +& =
d-2f 4 \w0D6(-2)) 4

1
Henced and ¢ are symmetric abouz =0 i.e. & and ¢ are symmetric abouX = E . This completes the proof.
Theorem 3.2
(1 1
Leta, =a, =0 and A, = A, =1in (3.1) and (3.2). Therd (Ej =0 and(d(zj =

Proof: Leta, =a, =0 and A, = A, =1in (3.1) and (3.2). We obtain

d;iigX) +5, ex{ﬁj B, = {0)=0 A)=0

260
"Zi&xhazexp(lﬁé‘é)(x))m-o o0)=0  6)=0

1
Since H(X) and ¢(X) are symmetric abouX = r Thend' (%} =0 and¢f (%j = 0. This completes the proof.

Theorem 3.3
et a,=a,=0,=/,=0 and A, =A, =1 in (3.1) and (3.2). Then &'(x)>0 and ¢ (x)>0 for

(o)

Proof: Let a, =a, =B, =3, =0 andA, = A, =1in(3.1) and (3.2). We obtain

d’o(x) _ -3, exp( 6(x )(x)] ¢(0)=0, ¢y=0

dx 2

SO0y ol 000 o o)
- -5, ( ()J 60)=0,  60)=0

dx?
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Using Ayeni [8], we obtain
o(t)

1
0(x) =3, [2k(x t)e"Vdt

o(t)

1 _ot)
o(x) = 3, [2k(x t)e"™ Ve,
where

X, 0<x<t
k(xt)=

t, t<x< 1

2

So

1 6()
- 52 Lg el+D9(t)dt

and

_ox) 1 el) 6(x)
(d(X) — 51 Xel+D0(x) + j 2 el+|]0(t) dt — Xel+|]0(x)

1 o)
=4, Lz e*0e(t) gt

1
Hence,H(X) and ¢(X) are strictly monotonically increasing fot[] [O, EJ . This completes the proof.

3.2 Analytical Solution
Here, we consider (3.1) and (3.2) when- 0 and assumel, = A, =1, J, =9, = 0. Subtracting (3.1) from (3.2), we
obtain
d?u
— +au+B=0 (3.5)
dx
u(O) = u(l) =0,
where
u=6-¢, a=a,+a,, B=5,-p5
The solution of (3.5) is obtained as
u(x) = - Blcosva ~1)sinvax , BeosVax _ B
asinJa a a
Ayeni [9] has shown thaexd@) can be approximated ak+ (e—2)6’+ 6?. In this paper we are going to take an
approximation of the form

3.§)

exp(@)=1+(e-2) (3.7)
Then (3.1) and (3.2) can be written as
2
¥+0/2u+,82 +J(1+(e-2)9)=0 (3.8)
X
d’p _
W—alwﬁl +0(1+(e-2)8)=0 (3.9)

We obtain the solution of (3.8) and (3.9) as

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011)277 — 284
280



A Mathematical Model and Simulation of Lime Shaft Kilns. R.O. Olayiwola J of NAMP

w+(6(e—2)—a 5+,82+'Ba2
( - 5(e—2)(5(e—2))(—a) : Dcos(ﬂﬁ)x)-

Ba,
po coyax] g i-coa Jsnfiax) et
0(5(6—2)—a) asin(ﬁ)(a(e_z)_a) 6(e—2)

(lo-2)-a 5+ g, + 2 Bactle=2Ni-cosla)

6(x) =

+

a

Ba ,o(e- 2)cos(\/3)_ pa,de-2) (5(e- 2)—a)(5+/3’2 .\ ,Bazj

a a

cos(/5(e~2))

sin(wldie— Zix) ' ) (3.10)
5o~ 2)ole-2)-a)sin(yate- 2))
qp(x) = al( '8(1 COS(\/_.))Sln(\/_ ) ﬁCOS(\/_X) 1 px’ J 1( o+ ,gl)xz _

a?sinlVa ) a? 2 a
oo 02 ot

Ba,d(e- 2)005(\/3)_ pa,s(e-2) (5(e-2)- a)(5+ B+ ,Bazj
cod5(6-2)
5(e-2) sin(\/g(e——zjx)

52 (e-2)°(0(e-2)- a)sin(y/ale-2))

| e e J

s2(e-2)*(s(e-2)-a)

+ B + Ba, X2
Ba, cos(\/Ex) .\ ﬂaz(l—'cos‘(\/z))sin(\/?x)_i(d Pty j
a?(se-2)-a) a’sinlJa)ole-2)-a) 2 5(e-2)

- 3(e-2)
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Ba,0(e-2) Ba,
g, paste-n) | arlle2)-alarp )
a? a?(de-2)-a) d(e-2)(s(e-2)-a)
(£2:0872) 1 (ole-2)- ) 5,4 222 )
5 (e~ 27 (0le-2)-a) cos/ole-2))-
(5(e—2)—a)(5+,8 +’3aj pa,dle- 20(!1 COS(\/_))
Ba,d(e- 2cos(\/_) Ba, 5( 2) (5(e—2)—a)(5+,82+’802j
co me—z))
ole-2) -2 0le-2)-a) il
(5+,82+'8"2j
,Bazcos(\/g) +,8a2(1—cos(\/3))_1 a
a’(0(e-2)-a) a?(0(e-2)-a) 2 d(e-2)
1.1, _(_BcoVa)_ pl-codVa)) 1B\ _pa, _ fa,dle-2)
20155 al[ asg ) ( aS( )) 2a] a’ a*(ole-2)-a)
,Bazécge—z) +(5(e—2)—a)(5+,82 . ﬂgzj X (3.11)
* (e-2\5(e-2)-a)

4., Results and Discussion

1 (1
We have shown, under certain conditions, thaﬁﬁ)() and ¢(X)are symmetric abouk = E (i) 8 (Ej =0

and qd[%j = 0and (iii) H(X) and ¢(X) are strictly monotonically increasing fot[] (O, %}
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Figure 1: Plots of 8(x) against x for equation (3.8) at various vahies of
& when a=23, f=1, o = 24, o, = 1, ﬁl =1, [32 =2, e=2718
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Figure 2: Plots of §(x) against x for equation (3.9) at vatious values of
& when a=25, f=1, oy = 24, o = 1, ﬁl =1, ﬁ2 =2, =278

Figures 1 and 2 display the graphs&(b() and ¢(X) versusX for various values ob . It is easy to see thaﬁ(x)

and ¢(X) increase a® increases. Here@(x) and ¢(X) are the gas temperature and material temperatspectively.

From the practical point of view, all these tempamres are favorable for formation of high qualityik lime since
maintaining a high temperature of calcinationseases the furnace productivity.
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5. Conclusion

In this paper a mathematical model to predict llkat transfer in a lime kiln has been presentea model
accounted for a situation where the reaction iswwdt-stirred. The governing equations have bedvesioanalytically using
high activation energy asymptotics. The presentedyais has shown that the Frank-Kamenetskii patemteas significant
effects on the temperature field of the system.

In [7], the reaction was considered to be welkstl, so the temperatures are function of time. fEsallts of the
simulation showed that these temperatures are gropal to time. But, in this study, we considetkd two point boundary
values and the results are in parabolic form.
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