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Abstract 
 
In this paper a mathematical model to predict the heat transfer in a lime kiln is 

presented. We assume the reaction is not well-stirred. We examine the properties of 
solution under certain conditions. The governing equations are solved analytically using 
high activation energy asymptotics. Results are presented and potential implications are 
discussed. 
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1.0 Introduction 
 

The primary function of the lime kiln is to convert 3CaCO  to CaO  for reuse in the causticizing process. The process 

involves heat and mass transfer between the kiln, fuel, primary and secondary air, drying of lime mud, and calcining of 

3CaCO .  

Lime production is a global industry that contributes greatly to social and economic development throughout the world. 
Many beneficial industrial and consumer applications are made possible by the use of lime. A variety of business sectors 
including industrial manufacturing, utility suppliers, and environmental technologies, rely on the affordability, versatility and 
practicality of lime. The mining and distribution of lime stimulates commerce in other business sectors such as, 
transportation, shipping, storage, tooling suppliers, and heavy equipment suppliers.  

A lime shaft kiln is basically a moving bed reactor with the upward-flow of hot gases passing counter-current to the 
downward-flow of a feed consisting of limestone particles undergoing calcination. A kiln basically has three operating 
sections: the preheating, the burning and the cooling zone. The preheating zone is that part of the kiln where the limestone is 
heated to its dissociation temperature. The burning zone is that part of the kiln in which reaction of the burden takes place. 
The cooling zone is that part of the kiln in which the lime emerging from the burning zone is cooled before discharge.  

The most common fuels used in shaft kilns are coke, natural gas, weak gas and pulverized lignite [1]. The majority of 
shaft furnaces for limestone calcination operate with counter-current flows of burden materials and gases (Boynton [2], 
Terruzzi [3], Tabunshikov [4] and Monastirev and Aleksandrov [5]). The furnace incorporates three technological zones: 
preheating, calcination and cooling (from top to bottom). 

Gordon et al [6] developed the multi-dimensional mathematical model to optimize the furnace design and the process 
parameters. The developed mathematical model belongs to the group of essentially non-linear models. According to them, it 
is not possible to develop an analytical solution of the problem. The finite element method was used to provide a solution. 
Olayiwola et al [7] developed a mathematical model of calcination process. The developed model took into account the 
Arrhenius heat generation and chemical reaction. They provided an analytical solution of the model and investigated the 
effects of activation energy and Frank-Kamenetskii parameters on the gas and material temperatures. 

In this paper we extend the model in [7] to account for a situation where the reaction is not well-stirred. We examine the 
properties of solution under certain conditions. Using high activation energy asymptotics, we provide an analytical solution 
and investigate parameters involved.  

 
2. Mathematical Formulation 

Here, we assume that the reaction is not well-stirred, that is, change depends on both time and space variable. We make 

the additional assumption that the reaction is in a steady-state so that time derivatives are zero, 0
t

∂ =
∂

. Under these 

assumptions, we arrived at the following steady energy equation 
For material:  
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The boundary conditions are 

( ) 00 TTm = ,  ( ) 0TLTm = ,  Lx ≤≤0                                                                                 (2.3) 

( ) 00 TTg = ,  ( ) 0TLTg = ,  Lx ≤≤0                                                                       (2.4) 

Here, as in [7], ρ  is density, E  is activation energy, R  is gas constant, q  is heat source,  

α  is heat transfer coefficient, λ  is thermal conductivity, C  is heat capacity, ε  is porosity, T  is temperature, x  is 

position, Q  is heat of reaction, A  is pre-exponential factor, g  is gas, m  is material. 

3. Method of Solution 
Let  
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together with the boundary conditions 
( ) ( ) 010 == φφ                                                                                                                  (3.3) 

( ) ( ) 010 == θθ ,                                                                                                (3.4)                                     
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λ =  is the scaled gas thermal conductivity for gas 

3.1 Properties of Solution 

Theorem 3.1 

 Let 021 == αα  and 121 == λλ  in (3.1) and (3.2). Then ( )xθ  and ( )xφ  are symmetric about 
2

1=x . 

Proof: Let 021 == αα  and 121 == λλ  in (3.1) and (3.2). We obtain 
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It suffices to show that ( ) ( )zz θθ =−  and ( ) ( )zz φφ =− . 
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Hence θ  and φ  are symmetric about 0=z  i.e. θ  and φ  are symmetric about 
2

1=x . This completes the proof. 

Theorem 3.2 
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Proof: Let 021 == αα  and 121 == λλ  in (3.1) and (3.2). We obtain 
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Theorem 3.3 

 Let 02121 ==== ββαα  and 121 == λλ  in (3.1) and (3.2). Then  ( ) 0>′ xθ  and ( ) 0>′ xφ  for 








∈
2

1
,0x . 

Proof: Let 02121 ==== ββαα  and 121 == λλ  in (3.1) and (3.2). We obtain 

( ) ( )
( )







∈+
−=

x

x

dx

xd

θ
θδφ

1
exp12

2

,      ( ) ( ) 01,00 == φφ  

( ) ( )
( ) 







∈+
−=

x

x

dx

xd

θ
θδθ

1
exp22

2

,      ( ) ( ) 01,00 == θθ  

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 277 – 284     



280 

 

A Mathematical Model and Simulation of Lime Shaft Kilns.    R.O. Olayiwola    J of NAMP 
 
Using Ayeni [8], we obtain 
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3.2 Analytical Solution 
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 We obtain the solution of (3.8) and (3.9) as 
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4. Results and Discussion 

We have shown, under certain conditions, that (i) ( )xθ  and ( )xφ are symmetric about 
2

1=x , (ii) 0
2

1 =






′θ  

and 0
2

1 =






′φ and (iii) ( )xθ  and ( )xφ  are strictly monotonically increasing for 






∈
2

1
,0x . 
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Figures 1 and 2 display the graphs of ( )xθ  and ( )xφ  versus x  for various values of δ . It is easy to see that ( )xθ  

and ( )xφ  increase as δ  increases. Here, ( )xθ  and ( )xφ  are the gas temperature and material temperature respectively. 

From the practical point of view, all these temperatures are favorable for formation of high quality quick lime since 
maintaining a high temperature of calcinations increases the furnace productivity.  
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5. Conclusion 
 In this paper a mathematical model to predict the heat transfer in a lime kiln has been presented. The model 
accounted for a situation where the reaction is not well-stirred. The governing equations have been solved analytically using 
high activation energy asymptotics. The presented analysis has shown that the Frank-Kamenetskii parameter has significant 
effects on the temperature field of the system. 
 In [7], the reaction was considered to be well-stirred, so the temperatures are function of time. The results of the 
simulation showed that these temperatures are proportional to time. But, in this study, we considered the two point boundary 
values and the results are in parabolic form. 
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