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Abstract 
 
Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), 

the steady viscosity-dependent free convection flow of a viscous incompressible fluid is 
investigated. Using the asymptotic method of solution on the governing equations of 
motion and energy, the resulting Ordinary differential equations were solved 
numerically. And the results show that the fluid energy decreases as the distance moved 
by the plate increases. 

 

1.0 Introduction 
 

Transient convection is of fundamental interest in many industrial and environmental such as air conditioning systems, 
human comfort in buildings, atmospheric flows, motors, thermal regulation processes, and cooling of electronic devices. In 
view of these applications, [1] investigated transient free convection flow between two horizontal parallel plates. The results 
of a numerical study of the transient natural convection flow between two vertical parallel plates were presented by [2].  

In this study, Joshi applied uniform heat flux on the walls. Singh [3] and Singh et al [4] studied the flow of behavior of a 
transient free convective flow of a viscous incompressible fluid between two vertical parallel plates on relative motion using 
Laplace transform technique. 

 The first numerical solution for developing natural convection flow in an isothermal channel was carried out by [5] 
using boundary-layer approximation. Aung [6], Aung et al [7], Miyatake and Fuzii [8], andMiyatake et al [9] presented their 
results for a steady free convective flow between vertical walls by applying different physical treatments for transport 
process. 

Our interest in this paper is to show how the distance moved by the plate affects the energy distribution of the fluid, and 
our model is taken from the work of [10] and [11]. 

 
1. Mathematical formulation 
The free-convection flow is two-dimensional and it is considered with the coordinate origin at an arbitrary point on an 
infinite, porous limiting vertical plate or wall. The x′ -axis is along the plate and in the upward direction and the y ′ -axis 

normal towards it. The fluid is viscous and incompressible. The flow is induced either by the motion of the plate or by 
heating it or both. 

The plate is at rest with a constant temperature∞T , and it is suddenly moved with a constant velocity
o

u . Its temperature is 

instantaneously increased (or decreased) by the quantity ( )∞′−′ TTwα  for 0ft , wT ′  ( )∞≠ T  a constant temperature of the 

plate. 
On the physical grounds of the present problem, all the quantities are assumed to be functions of the space coordinate y ′  and

t ′ , so that the vector of the velocity is given by ( 0,,vu ′′ ). 

Then the equation of continuity, on integration, gives 
o

vtconsv ′==′ tan (say), where 
o

v′  is the normal velocity of suction 

or injection at the wall according as 0p
o

v′  or 0f
o

v′  respectively. 0=′
o

v  represents the case of a non-permeable wall. 

The corresponding equation of motion and energy for this case are respectively; 
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where ρ  denotes the fluid density, T ′  the temperature, g the acceleration due to gravity, β ′  the coefficient of volume 

expansion, k the thermal conductivity; and Cp the specific heat at constant pressure. 

We assume that the viscosity

n
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 We introduce the following non-dimensional variables and parameters; 
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The corresponding initial and boundary conditions of the system (1) and (2) after being non-dimensionalized are: 

( ) 00, =yθ , ( ) αθ =t,0 , ( ) 00, =∞θ      (7) 

( ) 00, =yu , ( ) 0,0 =tu , ( ) 00, =∞u       (8) 

The boundary conditions (7) and (8) are solved asymptotically as  
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Non – dimensionalization of (1) and (2) according to (3), (4), (5) and (6) gives; 
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And for the steady case, 0=
∂
∂

t

u
 and 0=

∂
∂

t

θ
, equations (10) and (11) become; 
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We assume 10 <<< a , and if we treat the coefficients of oa  after expanding (12) and (13) asymptotically with 
nn aaa ...)()( 3
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The corresponding asymptotic initial and boundary conditions for the energy

o
θ , and for the velocity

o
U   are: 

θo (y, o), = 0, θo (0, t) = a, θo (∞, t) = 0 and 0)0,( =yU
o , 0),( =∞ tU

o
 

Equation (15) has the auxiliary equation 02 =− pmvm
o

, where m = 0 and pvm
o

=   

The solution for (15) is of the form θo (y) = A + B pyvol       (16) 
Using the boundary conditions for θ on (16) we have that: 

θo (y) = pya β−
l           (17) 

where 
o

v  = -β, β f 0 for finiteness 

Putting equation (17) into equation (14), we have that: 
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And on integrating equation (18), we have 

( ) pny

n

ypnp
no

pny
no

k

p

G
uu

dy

d ββββ

ααβ
α

α
β

lll
1. −=+ −     (19) 

Where k1 is the constant of integration 
Equation (19) can simply be written as 
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If we obtain the coefficients of a , we will have;  
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Satisfying 

u1 (0) = 0, u1 (∞) = 0,   θ1 (0) = 0, θ1 (∞) = 0 , where θ0 (y) = α pyβ−
l  

Unique solutions exist for (21) and (22) by the theorem below:  
Theorem [1]: 
Consider the initial value system; 
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Let D denote the region in (n+1) – dimensional space, one dimension for t and one dimension for vector X. 

If the partial derivatives ji
x

f

j

i ,,
∂
∂ = 1, 2,…, n are continuous and bounded on D. Then there is a constant δ > 0 such that 

there exist a unique continuous vector solution )(tX  of the system of equations (23). 

Equation (17) is a simple function whose points are plotted in Figure1 for 1=α and
2

1=βρ . 

Equation (19) which is a linear first order ordinary differential equation is numerically solved for 

1,
2

1
,1,1 ==== Gcba and 

2

1=βρ  for 3,2 == nn and 4=n using the forward different method with 1=
o

u , and 

the result is shown in Figure 2. 
2. Conclusion 

The energy,
o

θ  decreases as the distance moved by the plates horizontally increases. The energy decreases creating a kink 

before attaining a constant value. The velocity of the fluid decreases as n decreases. 
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Figure 1: The graph of the energy  ��0) against the  

distance (y) moved by the fluid 
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Figure 1: The graph of the energy  ��0) against the  
distance (y) moved by the fluid 

 


