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Abstract 
 

 
The unsteady flow of a Maxwell fluid through a porous medium induced by a 

constantly accelerating plate is studied. Exact solution is established by means of 
Adomian decomposition method. The similar solution for a Newtonian fluid is obtained 
as a limiting case of the Maxwell fluid solution. 
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1.0 Introduction 
 

This paper revisits the work in [1] in which the exact solution corresponding to the flow of Maxwell fluid is established 
between two side walls induced by a constantly accelerating plate where the asymptotic behaviour of the relaxation time is 
studied. Due to the diversity of fluid in nature, a lot of models have been studied in [2, 3] to describe the behaviour of fluids 
in different circumstances. A porous medium is a solid with holes which is characterized or described in terms of properties 
that affect the flow as discussed in [3].   

The use of Adomian decomposition method has been applied to a wide class of problems in the Sciences. Rich literature 
for the Adomian method can be found in [4]; the method has shown reliable results in supplying analytical approximations 
that converge very rapidly. 
 
2.0 Governing Equations 
Following [1], we examine the flow between two walls z = 0 and z = d 

 )oo, t),z, (u(y, =  t)z,   v(y,=v       (2.1)  

In the absence of body forces, the balance of linear momentum reduces to 

 ( ) ( ) uandu ztyt ∂=∂+∂=∂+ µτλµτλ 21 11       (2.2) 

 where u is the velocity, 
 τ  is the shear stress exerted by the fluid (drag),       

µ is the fluid viscosity 
Simplifying from [1], we obtained  
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Neglecting the z – co ordinate, allowing the pressure tends zero and adding the porous terms, equation (2.3) reduces to  
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 where  λ is the relaxation time 
      υ is the kinematic viscosity and  
 k is the permeability constant  
with the initial and boundary conditions as follows 
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where A stands for the Acceleration. 
 
3.0 Method of Solution 

We now non – dimensionalise with
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this implies that 
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Substituting equation (3.2) into equation (2.4), we obtain 
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We divide through by υ0 to get  
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Also 
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Similarly,  
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Substitute equations (3.5), (3.6), (3.7) and (3.8) into equation (3.4) to obtain  
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Rearranging and multiplying through by 
ν

2d
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Da =  where 0k is the Maxwell parameter, Da is the Darcy’s constant [3]. 

Hence, equation (3.10) reduces to  
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00 →k  implies Newtonian flow. Of interest is 00 ≠k and we let 1=a . Also, we drop the bar over variables since there is 

no confusion. 
That is, 
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Using Adomian method, we integrate equation (3.13) as follows: 
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Integrating equation (3.17) again  
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From initial boundary conditions (2.5),  
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We let 2
0 )( tta =  which implies that  
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Using [4], we get Adomian polynomials as follows:  
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Simplifying we obtain  
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Using equation (3.24),  
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and integrating equation (3.30) twice  
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Using equation (3.31), we obtain    
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And using equation (3.32), we arrive at  
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Similarly, we obtain   
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Also, we use equation (3.35) to get  
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Generally, 
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Testing the result with [5], it shows that equation (3.39) can be written in a better form as follows:
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 4.0  Discussion of Results 

Figure 4.1 shows the graph of velocity against y for t equals 5s, 10s and 15s respectively when the relaxation time λ is small. 
It clearly indicates that the flow is unsteady and that the velocity increases as time also increases. 

   

    Figure 4.1: Graph of u against y for t = 5s, 10s and 15s.          Figure 4.2: Graph of u against t for λ = 0.01, 0.5 and 1 

Figure 4.2 shows the graph of velocity against t for relaxation time (λ) equals 0.01s, 0.5s and 1s respectively which indicates 
that as relaxation time increases; each velocity increases and is at minimum when at rest.  
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5.0  Conclusion 
We have studied the flow of a Maxwell fluid through a porous medium induced by a constantly accelerating plate and 

the result show that when there is porous medium like in sand, the relaxation time behaviour changes as time increases. Also 
it is clearly seen that velocity increases in both cases as time increases which satisfies the initial and boundary conditions. 
Thus, it implies that the porous medium has effect over the flow. 

We have used Adomian decomposition method to find the nature of the Maxwell flow. It shows that our result exists and 
unique. 
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