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Abstract 
 
It is more of biological significance to consider the effect of interacting species 

when we study the dynamical behaviour of epidemiological models.  We have considered 
population in a predator prey system with disease in the prey that is divided into three 
classes: the Susceptible, the Infected but not infectious and the Infectious classes. 
Stability analysis shows that  the disease free equilibrium is globally and asymptotically 
stable in the domain D if the reproduction number 

0 1 .R <     Its epidemiological 

implication is that the infected but not yet infectious and the infectious prey population 
vanishes so the disease in the prey die out. 

 

 

1.0 Introduction 
The study of diseases in a prey-predator system has gained much interest in recent years [2, 3].  Species does not exist 

alone there is always interaction with other species.  While species spreads the disease, it also competes with the other 
species for space or food, or is predated by other species. Therefore it is more of biological significance to consider the effect 
of interacting species when we study the dynamical behaviour of epidemiological models.  Therefore an appropriate 
mathematical model is essential to study the effect of disease on interacting species [7].  Mathematical models have become 
important tools in analyzing the spread and control of infectious diseases and the consequent effect on population [3, 10, 11].  
Mukherjee [6] analyzed a generalized prey-predator system with parasitic infection.  Mukeheje [7] also investigated how the 
predation process influences the epidemic considering the case where the predator eats infected prey only.  In epidemiology 
the population is divided into two classes Susceptible (S) and the Infected (I), however in practice this is not so as susceptible 
individual stays for some definite period after leaving the susceptible class and joining the infected class.  This intermediate 
period may be termed as incubation period. The incubation period is defined as the time from exposure to onset of disease 
and when limited to infectious disease, corresponds to the time from infection with a microorganism to symptom 
development [1, 8].  This class is similar to the Exposed class in epidemiological models (see [5]).  Therefore we consider a 
predator – prey population model in which a disease that can be transmitted by contact spreads among the prey.  Unlike in the  
[7] model where the predator only preys on the infected, in our model we allow the predator to prey on susceptible, the 
infected not infectious and the infected class. 
 
2.0     Model Formulation 

We assume that the disease places new recruits from the susceptible class into infected but not yet infectious class 

(exposed) for a period of incubation. This set of new recruits we denote by  ϕ (t).  As usual ( )S t , ( )I t and ( )P t  represent 

respectively the  susceptible prey, the infectious prey capable of transmitting the disease and the  predators class.  We assume 
the disease that can be transmitted among the prey by contact.  The contact rate is taken in the form of bilinear mass action 
incidence law.  The way an individual leaves the susceptible class is by becoming infected at the rate a or by being consumed 
by predators at the rate c.  Each infected but not yet infectious ϕ (t) individual generates ( )I t new individual per unit time 

while ( ) ( )S t I t  individuals generate the infected but not yet infectious class ϕ .   The ways an individual in the infected but 

not yet infectious class ϕ  can leave the class is by being infected at the rate β  individuals per unit time or by being 

consumed at the rate c, which is the same as the rate the predators consume the susceptible.  This is true because at this rate, 
the symptom has not developed, hence will not hinder its efficiency to avoid predators.  Also we assume some of the 
individuals in the infectious class will die naturally, or die due to the infection at the rateµ , while others are being consumed  
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by predator at the ratem .  We also assume that the contact rate between the infected and not yet infectious class and the 
susceptible class cannot spread the disease.  We define K as the carrying capacity of the prey and the predator’s net gains for 

consuming the susceptible class, infected but not yet infectious class is 1θ , while 2θ  is the net gain for consuming the 

infectious class and that 1 2 .θ θ>  Based on these assumptions, we have the following differential equations respectively for 

the susceptible class, infected but not yet infectious class, the infected class and the predator class 
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The initial conditions are given as 

    (2a) 
0,0,0,0,0,0,0,0,0 21 >>>>>>>>> mcar δθθβµ .          (2b) 

[9] had considered the stability of system of equation (1) and determined the condition for epidemic outbreak.  Haque et al 
[4] had pointed out also that there are three biological relevant equilibria E0, E1, E2 for a system such as in equation (1). 
 
3.1    The Steady States 

The steady state occurs when  
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This reduces our system (1) (when the variables are distinguished with asterisk) to 
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From equation (7), 
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* =−++ δθφθθ ISP       (8) 

Equation (8) implies that  

0* =P  or ( ) 0*
2
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When 0* =P , 

This reduces equations (4) – (7) (when the variables are distinguished with subscript 0)to 
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0000 =− βφIaS        (10) 

000 =− Iµβφ         (11)
  

 

From equation (11), 

β
µφ 0

0
I

=         (12) 

Using equation (12), equation (10) becomes 
( ) 000 =− µaSI         (13) 

This implies that  

00 =I
  
        (14) 

or 
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0
0
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From equation (14), (12) becomes 

00 =φ         (16) 

Using equation (14), equation (9) becomes 
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( )0,0,0,00 ≡Ε  at the origin        (17) 

 When ,0, 00 == PKS  

Equation (9), (10), and (11) becomes 

01 =−aKI         (18) 

011 =− βφaKI         (19) 

011 =− Iµβφ         (20) 

From equations (18) (19) and (20), we have that  

01 =I  

01 =φ  

We then have equilibrium  
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Equations (4) – (7) reduce to 
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Using equation (25), equation (23) becomes 
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We now consider the case when eiP .0≠  

When ( ) 0*
2

*
1

*
1 =−++ δθφθθ IS  

So that our equations (4-7) become 
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033333 =−− PcIaS φβφ        (29) 

03333 =−− IPmI µβφ       (30) 

 
Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 215 – 222    



218 

 

Stability analysis of a predator prey system with disease in...   Oghre and Egherha    J of NAMP 

 

03332331331 =−++ PPIPPS δθφθθ     (31) 

From equation (28), if we set ,03 =S equation (28), (29), (30) and (31) becomes 

       03 =S         (32) 

          0333 =−− Pcφβφ        (33) 

      03333 =−− IPmI µβφ       (34) 

        03231 =−+ δθφθ I
      

(35) 

From equation (33), we have 
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Using equation (36), (34) becomes 
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Using equation (37), (35) becomes 
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3.2     Stability of The Steady States 
At steady state, our system (1) reduces to  
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The Jacobian matrix J0 is given as 
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Evaluated at ( ) ( ),0,0,0,0,,, 0000 =PIS φ  J0 reduces to  
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The characteristic equation for J0 is given by 
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  ( ) ( ) ( )( ) 0=−−−−−−−= λδλµλβλr                                          (43) 

Our eigenvalues can be obtained from the expression 
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Since all the eigenvalues are not negative, it implies that the disease free equilibrium will be locally asymptotically stable if
0<r . But 0>r , hence the system is unstable at this point. 

The Jacobian matrix 1J at evaluated at ( ) ( ) 11111 ,0,0,0,,,, JkPIS =φ  reduces to  
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The characteristic equation for 1J is given by 
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This implies that 
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Since all the Eigen values are negative, it therefore implies that the disease free equilibrium is locally asymptotically 
stable. 

In similar manner, for Jacobian matrix2J , 
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 Since ( )2 2 2 2
0 0 0 0

1 1 1
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Equation (47) becomes 
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The characteristics equation for 2J is given by  
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To determine the stability, we apply Routh-Hurwitz criteria for cubic polynomial which states that if we have the 
characteristic equation of a Jacobian Matrix in the form 

( )( ) 023 =+++−− CBAa λλλλ                          (50)                                     
 But  a−=λ   is negative, then the stability is satisfied if and only if .,0,0 CABBA >>>  Comparing equation  
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Clearly, we say that all the eigen-values of the Jacobian matrix have negative real part provided 0, >−= rδλ , hence 

the disease free equilibrium corresponding to 2J  is locally asymptotically stable. 

    The Jacobian matrix 3J  is given as  
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Evaluated at  
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Since  λ  is of degree three, we apply the Routh–Hurwitz criteria to determine the stability. If λ is negative, then the stability 
is satisfied if 

.,0,0 CABBA >>>                                                                   (58) 

Equation (52) will be stable if 
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 and inequality (58) is satisfied. 
 
4.    Global Stability 

The global stability of the disease.-free equilibrium can be analysed. But we need to choose a suitable domain that is 
positively invariant for our analysis. We follow the method in [7]; 

We define a domain 

( ){ }0,0,0:,, ≥≥≥= ISISD φφ      (60) 

The domain is positive because no solution paths leave through any boundary. Solution exists for all positive time  .0>t   
We need to show the disease free equilibrium is globally asymptotically stable in D if the upper limit on the number of 

infected prey .1<oR
 

By Lyapunov functional, 
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Where 0>V   since, ,0,0,0,0,0 >>≥≥> aIS µφ . 

Next we obtain the Lyapunov derivative of V i.e differentiating the Lyapunov functional V with respect to time t. i.e, 
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So that from system (1), 
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Since
0R
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, and in the disease free state, ,KS =  
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We have shown that the Lyapunov derivative is less than zero. i.e  

     0<V&      Provided    .10 <R  

The condition for 0<V& is that 0,0,0,0 >>>> mca µ  
We see that the value of V& strictly lies on the value of 0R  

Thus if 
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10 <R , then 0<V&  

Clearly, the set 0=V  gives the face of D with   0=φ but  aSI
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5.   Conclusion 
The implication of equation (65) is that the disease free equilibrium is globally asymptotically stable in the domain D if  

.10 <R   Its epidemiological implication is that the infected but not yet infectious and the infectious prey population 
vanishes so the disease in the prey die out.  
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