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Abstract

Population and epidemiological models are constructed based on plausible explicit
and implicit biological assumptions. While species spreads disease, it also competes
with other species for space or food or is predated by other species. We have presented a
predator prey system with disease in the prey putting the prey into three classes viz the
susceptible, the infected but not yet infectious class and the infectious class. Both the
sound and infected but not yet infectious prey and infectious prey are bounded above for
all time and the total population at infinity is asymptotically constant. The threshold

a
parameter Ro = — controls the dynamics of the system.

1.0  Introduction

While population ecology studies populations and hiobey change over time due to changes as a refstiie various
interactions between them and their resources,eap@ogy aims at devising vaccination policies tghtf infectious
diseases. The two fields however are mergingdameyears with the introduction of population gtiw epidemic models.
[5, 10].  The main object of modeling in this nanea is to answer the role of infectious diseaseegulating natural
populations, that is, decreasing their sizes anlerireducing their natural fluctuations or causihestabilization of
equilibrium positions, into oscillations of the pdation states.

Basically in epidemiology, population can be clfsdiinto two categories: susceptible and infectédwever when an
individual is infected, he stays for some defiqitriod after leaving the susceptible class andrjgithe intermediate class.
This intermediate period is termed the incubatieriqal. The incubation period is defined as theetfrom exposure to onset
of disease. That is, it corresponds to the timenfinfection with a micro organism to symptom depsient [2]. While
species spreads disease, it also competes with spikeies for space or food or is predated by athecies. Therefore it is
of biological significance to consider the effect ioteracting species when we study the dynamicahalior of
epidemiological models so an appropriate modetseetial to study the effect of disease on intargdpecies.

The Lotka — Volterra model is the simplest way todel predator — prey interactions while the Kermiftidkendrick
model has been used to study Susceptible - InfeetiRemoval (SIR) epidemiological model [1]. Basm: these two
pioneering works several models have been develop#tese areas [3, 8, 9]. Freedman [4] preseatstidy on predator
prey system in which some members of the prey @ojoul and all predators are subject to infectiorphsasite. Mukherjee
[11] studied a stochastic prey predator model witease in the prey whereby he presented the istadilalysis of the
model. Haque et al [7] in a study of an ecoepidémgical prey predator model with standard diséasielence analysed the
local and global stability of the system of equatand found the threshold property below whichitifection disappears.
They found out that a sufficiently strong diseaséhie prey may avoid predator extinction and iespnce can distabilise an
otherwise stable predator prey configuration. mdrad Sharma [2] introduced the role of the incigdmaperiod in a disease
model which created a new class of infected butyestinfectious individuals. In this work we cotler a predator prey
model, in which a disease that can be transmitjedoltact spread among the prey population takitg ¢onsideration the
infected but not yet infectious individuals.

2.0 Model Formulation
We consider a predator — prey population modelhichva disease that can be transmitted by contaeads among the
prey. We assume that the disease places new meéroib the susceptible class into infected but ywitinfectious class

(exposed) for a period of incubation. This set@f/mecruits we denote by (t). As usuaIS(t) , 1(t)and P (t) represent
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the susceptible prey, the infectious prey capabteansmitting the disease and the predatorsclas
We assume the disease that can be transmitted athengrey by contact. The contact rate is takethenform of
bilinear mass action incidence law. The way arviddal leaves the susceptible class is by becorifected at the rata

or by being consumed by predators at the catd€ach infected but not yet infectiog(t) individual generated (t) new
individual per unit time whileS(t) I (t) individuals generate the infected but not yetdtiteis clasg®. The ways an

individual in the infected but not yet infectiousss ¢ can leave the class is by being infectious araibe 5 individuals

per unit time or by being consumed at the at@hich is the same as the rate the predators amnsue susceptible. This is
true because at this rate, the symptom has notafma hence will not hinder its efficiency to a¥gredators. Also we
assume some of the individuals in the infectioasswill die naturally, or die due to the infectatrthe ratgl/ , while others

are being consumed by predator at the Mate We also assume that the contact rate betweeimtbeted and not yet
infectious class and the susceptible class caqmetd the disease. We defifeas the carrying capacity of the prey and the
predator’s net gains for consuming the susceptilalss, infected but not yet infectious classﬁls while 92 is the net gain

for consuming the infectious class and téat> &, .

Based on these assumptions, we have the followifeyehtial equations respectively for the susdaptclass, infected
but not yet infectious class, the infected clagstae predator class

dS-rS[l—%)—cSP—aSl

dt
dg
— = aS - -cpP
at By @ )
dl
— = Py - mP -
pm By U
Z—T=018P+ 6,pP +6,1P - P
The initial conditions are given as
S(0)=0,¢ (0)= 0, I(0)= 0, P(0)=0 (2a)
r>0,a>0,4>0 8>0,6,>0,6,>0,¢>0,5>0 m>0. (2b)

3.0 System Boundedness
Consider the first equation of system (1),

ds -rS[l—%j—cSP - ad

dt
d_S <rS (1 - Ej ©)
dt K

Consider O<t,=st,

S(t,) < K = S(t) <K

To show boundedness we define a function

W=S+¢+I| +aP (4)
where w = min {i , ﬂ} (5)
6, g,

The time derivative of equation (4) along a solutid system (1) is
dw _dS d¢ d dP
—_— = — + L+ — + w— (6)
dt dt a dt dt
Using equations (1), equation (6) becomes
dc\jN_t: rs [1—%] -cSP -a9 +ad - B -cgP + Bp - mP - ul
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+6,aSP + 6w + 6,alP - daP

MW (1 _ %) Ce-wh)P -(c-w) P - (m-awd,)P-pl -aop ()
Using equation (5), (7) reduces to
daw S
— =18 — | = 4l - woP 8
a [ K] N ®)
Multiplying both sides of equation (3.4) By > O gives
W =ns +n¢ +nl + naP )

Adding equation (8) and (9), we then have,

—d(\j/:/+/7W—rS( E]—/II—MP+/78+/7(0+/7I+/750P
d(\j/:/ +/7W=rS(l—%)—(,u—ry)l—(wd—rya))P+/78+/7(p (10)
If we take/7 < min (,u,é), equation (10) reduces to
M+/]W <rS (1—§j +nS +ng (11)
dt K
We see that the right hand side of the above iriggimbounded. We can then fidd> O such that
dw
—+ W < (12)
a
So that
W (13)
| - nW
Integrating equation (14) with respect to time thia intervaI(O, to) where (O <t, < t)
j j it (14)
I —/7W
to give us
W(t,) < == @-nw(©)e ™ + - (15)
7 7

From the inequality (15), we see that at timeQt, the total population of the susceptible, infdatet yet infectious,
infectious and the predatorW(O) whereW(tO) is the total population at timg* 0. At any time t, we have

W (t) = (w ) - '—J et 4+ L (16)
n 7
Whent — oo, we have
Lim W() < 1 (17)
toe n

Sincel_ is a constant, then for a suitall® independent of the initial condition, we have

n

Limw(@) <= =M (18)

QIH

The above shows that the total population atiityfils asymptotically constant.
4.0 Conditions For Epidemic Outbreaks
From the second and third equation of system {19llows that

—d(¢dt+ ) = asl - cgp —mip — ul (19)
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dlg + 1)

ﬁ S (aS - ,u)l
dig+ 1 _
=== (as - u) |
This implies that
% < (as- )1 (20)
Using the proposition in [7],

Let Ry = %. Both the sound and infected but not yet infectiotesyy and infectious prey are bounded above fdirad;

S(t) < max {K, S(O)} ,
1(t) < ko = k[i - 1]
U

If Ry <1, the infection disappears.
LimlI() =0 (22)
t 5 o

Thus in a predator-prey ecosystem in which the preyféstefl by a disease, there is an upper limit on the nhumbée of t
infected prey. The infection can propagate onlizif>1,a threshold phenomenon closely related to the “basic repreeucti

ratio” R, of the classical epidemic theory.

5.0 Conclusion

In this work we have presented a predator prey system vgitlagk in the prey putting the prey into three classes, the
susceptible, the infected but not yet infectious class anthfibetious class. Intra-specific competition of the infectead/pr
and predator are also incorporated in the model. Both tha& souhinfected but not yet infectious prey and infectioey p
are bounded above for all time and the total populationfimity is asymptotically constant. The threshold pzeter

R, = 2 controls the dynamics of the system. The infection capagate only ifR, >1
u
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