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Abstract

This paper is on reaction kinetics models for approximating diffuse propagation
reaction frontsin one-dimensional gasless combustion type models. This study is carried
out in the context of free-radical frontal polymerization (FP) via a propagating, self
sustaining reacting front in the absence of material diffusion.

The model which is a system of partial differential equations is linearized into a
system of ordinary differential equations and solved numerically. Results are obtained
for different valuesof £ .
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1. Background and Introduction

Frontal polymerization is a mode of free- radicalymerization of a monomer which in the presenca tiermally unstable
initiator converts into a polymer via a propagatilogalized reaction zone. (Comissiong et al, 2005)

In a typical experiment the reagents are put itaagtube, and the temperature of the mixture &sme by applying a heat
source at the top of the tube. The increase in ¢eatpre induces decomposition of the initiator Wwhproduces active
radicals, and the polymer chain growth processrsegChemical conversion then occurs in a narroealived region.
Depending on the choice of the reactants and thdittons of the experiment, the front either maynmay not propagate
with a constant speed. Various non-uniform progagatan occur, if it is assumed that the front alsvaemain flat. The
polymer chain growth occurring in this reaction @as highly exothermic, and the resulting heataséepromotes initiator
decomposition ahead of the front. In this way, H sestained reaction wave can form (Golovaty, 200his unusual
method of polymerization holds promise as a methiodroducing currently available materials in a mmenergy-efficient
process, and of producing superior thermoset nadseri

There are several conditions necessary for thaemds of the frontal mode. First the ignition temgere must be high
enough to generate and initially sustain the reactiont. Further, the reaction rate must be exégnsmall at the initial
(ambient) temperature but very large at the frentfderature. The high reaction rate coupled withetkithermicity of the
reaction must be sufficient to overcome heat loggesthe reactants and product zones.

Both steady and unsteady front propagation have ledserved in many research works. Unsteady frompagation is
usually undesirable as it leads to the non-uniftiagered” structure of the final product. One tife goals of the modeling
is to determine the range of material parametetisinvivhich the stability of uniformly propagatinglymerization front is
guaranteed. The analysis of the full model is, haweoo complicated because it requires solvingystesn of coupled
nonlinear partial differential equations describinmiltiple reactions and energy transport. In orttermake analytical
predictions, numerous simplifications are usualyrdduced by employing asymptotics in terms of $nparameters,
considering effective kinetics, etc. This differerio parameter values may lead to the differencesbservable long time
behaviors between systems undergoing self promaghigh-temperature synthesis (SHS) and frontaymetization (FP)
(Golovaty, 2007).

2. Reaction Kinetics Model In The Absence Of Material Diffusion

Although the mechanism of free radicals polymertratnvolves three steps — initiation, propagatiang termination — and
five reagents — an initiator, and active initiatadical, an active polymer radical, a monomer, amtmplete polymer chain,
a number of simplifying assumptions are made taicedhe complexity of the underlying mathematicalde (Golovaty,
2007).
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Hence we assume that:

e The rate of reactions between the initiator radiGid the monomer and between the polymer radicalsthe
monomer are the same.

e The rate of change of total radical concentrattomuch smaller than the rate of their productioth @nsumption.

e The initial concentration of the initiator is sada that it is not appreciably consumed duringgbl/merization
process.

» Both reagents and the final product are viscousigindo ignore convective effects and bubble foramati

e The test tube is sufficiently thin with the adidbaboundary condition on sidewalls is so that thpatisl
dependence of the solution be restricted to thal aairiable.

Supposed that a test tube containing the monoretiator mixture occupies a regiof [ R® and denote byM (X,t) the

monomer concentration and Biy(X,t) the temperature of the mixture at the pokii] Q and the timet = O then for the

process of free — radical polymerizations, Goloyasented a single step, effective kinetics mofleilonomer- to-polymer
conversion as

Y
oM RyT,L T

— = —kMe ¢ (1)
ot

oT : [1‘LbJ
5o = v (kOT) + kaMe Ralol T

2
and assume that T and M satisfy the initial cood#
T(x,0) =Ty
M (x,0) = Mg, xO[-L,L]
TX(—L,t) =0,
M X(i L,t) =0,
T(L,t) :Tb,
tQd (O,to)

where: K is the thermal diffusivity of the mixture/final gaduct
K is the effective pre—exponential factor in theh&mius Kinetics

R, is the gas Constant.

®)

(4)

E is the effective activation energy.
T, is a reference temperature to be specified

C= specific heat density
£ = mixture density

AH
g = ———, where AH =reaction enthalpy

co

Throughout this work, we assume that the test tslmme — dimensional) =[-L,L], and that thermal diffusivityk” is
constant ( we ignore possible dependenc&obn temperature and degree of converf’p_mﬂ/ j Then the problem (1)
M,

— (2) reduces to

E Tb
1-—
CLUSYR RgTB[ TJ ()
ot
2 E_[1-To
IT -« 27T 4 kgve ol (6)
ot ax?

We will assume that T and M satisfy the initial ddions
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T (X,O) = TO (7)

M (x,0) =Mg,xO[-L,L]
In order to initiate the reaction, heat must bepsied to the system; hence for the fifgtseconds we will use the following
boundary conditions

T, (-L,L) =0,

M, (£L,t) =0, @)
T(L)=Tp

t0(0,tg)

During the front propagation regime, we impose dd@batic and impenetrability boundary conditiomstioe temperature
and the monomer concentration, respectively byrgett

Tx(i L,t) =0,
My (£L,t) =0, (9)
t= to

3. Nondimensionalization

To facilitate the analysis of the system (5) and i@ introduce a convenient non —dimensionalirgtio

Let E be a non-dimensional temperature,
6=(T-Tp) 5 p
RgTh

We can now write equations (5) and (6) as

aa—'\: = —kMe i+ (14)

=K 5 + OMe Piveo (15)

Where 0 = is the Frank — Kamneskii Parameter.

2
RgTb

The initial and boundary conditions are:

6(x,0) =0,

M (x,0) =1, x0[-I,l]

M, (xl,t)=0

.(xl,t) =0, t=>r, (17)
é(,t)=1, tO(O,r7,)

(16)

4. Transforming The Model Into A System of Ordinary Differential Equations
We now modify the problem as

6
%\A:Mo—kMe 4"'55 (18)

2 g
9 _ 0 9+5Mef+ge (19)
At gy2

Where M|, is the initial monomer rate.

2
According to Sattinger (1972), x g can be approximated asn8
ox

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011)199 — 204
201



Reaction Kinetics Model of Polymerization in the Absence ... Durojaye and Ayeni J of NAMP

Using this in equation (19), we have

6
M~ M, - kMe A+ e (20)
dt 0

6
%:_,79 + oMe e (21)
6(x,0) = 0,

M (x,0) =1, x0O[-I,I]
5. Existence and Uniqueness of Solution
Theorem 1

LetQ ={( X,t):|x, <c0<t<d} , wherg(X =X,X,),and”], M,, kand 0 are constantsQ < £ <1. Then the

initial value problem (20) — (21) has a unique &olu
Proof

Let X, =M, xo =6 inegn (20) and (21)
We take functionsf,, f, such that

X2
fl(xl’ Xz) =M o kxleAEXZ

e
1+ex
fi(X, X)) = - x, +dx e ?

The partial derivatives are:

oo kex%gX2
ax, ’
of, | - | - kxy e%“z

of,

0X,

0f2 =|-p+ JXI ex%sxz
X, @+ ex,)

for X, = Owe have,

of,
0X,
of,
X,
of,
0X,

afz‘

< +k

IN

+ Kk

IN
(8%

IN

+n +0
0X, 7
oty ofy o ofy
ax, 0x, 09X 0,
Then by Boyce. 2001. p 105, the boundary valuelprol§20) — (21) has a unique solution.

are continuous and bounded,
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6. Numerical Solution
We solve the resulting system of ordinary diffei@néquations (20) — (21) for various values &€ for £ =0.1 using

MATLAB ode23 solver. See Appendix
The results for different values of k agdare shown in the following graphs;
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Fig. 1 Graph off(x,t) and M (x,t) Fig.2 Graph of6(X,t) and M (x,t)
against t fork =1 and £ =0.1 against t fork =0.1 and& =0.1
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Fig. 3 Graph ofd(x,t) and M (x,t) Fig. 4 Graph ofd(x,t) and M (x,t)
against t fork =0.001 and€ =0.1 against t fork =0.001 and€ =0.1

7. Discussion of Results
Figures 1 show that &t =1 and when activation energy is small so tha0.1, monomer concentration rises

(i)
and decreases after a point while temperatureases with time.
(i) Figure 2 show that gk =0.1 temperature increases with time while rissianomer concentration is lower than

(i)

in figure 1.
Figure 3 and 4 show that &=0.1 andk =0.01, very little reactant is consumed, while tengpure increases

with time.
Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011)199 — 204

203



Reaction Kinetics Model of Polymerization in the Absence ... Durojaye and Ayeni J of NAMP

8. Conclusion

(i)

When k small, very little reactant is is consumed, whilmperature rises with time. in all cases

Appendix

Matlab programme for solving

a a
d_M:M —kMeA"‘ge %:—[]Q+d\/|e4+€0
at 0 Cdt

dm(1)= mo-k*m(1)*exp(m(2)/(1+e*m(2)));
dm(2)=-gamma*m(2)+delta*m(1)*exp(m(2)/(1+e*m(2)));
plot(t,m(:,1),-",t,m(:,2),"-.") grid

Title (plot of M and T as functions of time);
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