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Abstract

This paper is on the numerical study of reaction kinetics model for approximating
diffuse propagation reaction frontsin one-dimensional gasless combustion type models.
The study is carried in the context of free-radical frontal polymerization (FP) via a
propagating, self sustaining reacting front in the presence of material diffusion.

The model which is a system of partial differential equations is analyzed
numerically using the finite difference scheme to obtain resultsfor1, 2, 3, 4, 10, 100, 1000
(where p isthe order of reaction).
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1. Background and Introduction

Frontal polymerization is a mode of free- radicalymerization of a monomer which in the presence dhermally
unstable initiator converts into a polymer via agagating, localized reaction zone [5].

In a typical experiment the reagents are put iteasgtube, and the temperature of the mixture &aseé by applying a
heat source at the top of the tube. The increaseniperature induces decomposition of the initiatbich produces active
radicals, and the polymer chain growth processrsedChemical conversion then occurs in a narrowalined region.
Depending on the choice of the reactants and thditions of the experiment, the front either maynmay not propagate
with a constant speed. Various non-uniform progagatan occur, if it is assumed that the front glsveemain flat. The
polymer chain growth occurring in this reaction @as highly exothermic, and the resulting heataséepromotes initiator
decomposition ahead of the front. In this way, # sastained reaction wave can form [6]. This uraismethod of
polymerization holds promise as a method of praayciurrently available materials in a more enerffigient process, and
of producing superior thermoset materials.

There are several conditions necessary for theezxie of the frontal mode. First the ignition temgtere must be high
enough to generate and initially sustain the reactiont. Further, the reaction rate must be exélgnsmall at the initial
(ambient) temperature but very large at the frentfderature. The high reaction rate coupled withetkiethermicity of the
reaction must be sufficient to overcome heat loggesthe reactants and product zones.

2. Reaction Kinetics Models In The Presence Of Material Diffusion

Durojaye and Ayeni, [2] presented step functiorctiea kinetics models of polymerization in the mese of material
diffusion and solved analytically using the Adom@gromposition method. In this work we considerntheerical solution
using the finite difference scheme,

Supposed that a test tube containing the monontiator mixture occupies a regio@ [JR® and denote by (x,t)

the monomer concentration and Pyx,t) the
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temperature of the mixture at the poixtl]Q and the timé=>0and ¢ = (T -Tp) E the non-dimensional
RyTy”
temperature, [2] presented step function reactinatics models of polymerization in the presencenaferial diffusion as
oM _9*M 9
7 = > — aM Pe4+59 (1)
ot ox
2
ot  ox
where a, b and n are constants
with initial and boundary conditions
6(x,0)=0
6,01)=6,at)=0 "
M(x,0) =1-x '
M, Ot) =M (Lt)=0
and considered a particular case where a = ba@timbining the equations we have
dp _0°p
b for ¢=M+6 (4)
ot ox? ¢
with
¢(x,0)=1-x -
5
g 01 =¢11)=0
Solving by separation of variables we get
00 . 2”2[
@x,t) =1- cog2n—1)rxe®"™
Z_;' (2n 1) Vg { )
So, ¢(xt)C1
Therefore we have
06 _9°0
98 -9 L pla- o) e ©)
ot  ox?
6(x,0) =0
6,(0t)=6, (L) =0
3. Numerical Solution (Finite Difference Method
g . ..-6 .
We use the forward difference sche@le= Lt L] and the central difference scheme
6., 26, +6,_,
g =i '2 i-Li for the time derivative and the space derivataspectively
* h
in equation (6) to get
6 i
6, a0, 6.,-26 +6_, reed
L+l ho— i+l i Ll 4+ ph(1-6 Pe i
< 2 1-0;) )

which can be written as

Hi’/
1+&6;
‘9i,j+1=(1_2r)‘9i,j+r(9i+ZLj+9i—ZLj)+bk(1_9i,j)pe L
where r:th
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We approximate the Neumann boundary condifipf0,t) =0 as

6 =6, 8
Also, approximating the Neuman boundary ConditiHQ (1, t) = 0 in the same way gives
gn,j = gn—],j (9)

Hence our difference scheme is

K P Hi%f&
_ K B _ g
9i,j+1_6i,j+h2[0i,j+l 26?i,j+6?i,j+1}+bk(l f)" e (10)

6,,=0=6,,, j=123...,n

6,=6,, 6, =6
O<sr<3
0 =01 Oui; =6y

Lemma 1
The solution of the difference scheme (10) converges poiettaithe solution of the initial-boundary value problei (6

Proof
Following [7] denote the exact solution to the problenb{6)

g =0'(xt) (11)
and set

Z, . =6,, 6 (kK\x,nAt)

we can write the equation (6) as
9 v cor
Gy (KX, NAL) — By (K AX, NAL) —b(1-8') P e /1+ 6

:9h+1k ~6h,k 1

(H’n,k+1 - 26n k +9’n,k—1)

At Ax2 12)
kAG
-b{l-kag)Pe 4+ A" +0(At) + o(sz).
Thus, &, , = & (kAX, nAt) satisfies
Ginn = A=2r)G, + r(grll,kﬂ + Hr’1,k—1)
(13)

—bli-g,, ) e +ofat?)+o{atax?)
Subtracting (13) from (10), we see trﬁq’k satisfies
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L =Q=2r)Z, + If(Zn,|<+1 + Zn,k—l) +dAt2) +dAt AXZ)- (14)

If 0<r< % the coefficients on the right hand side of (14) are nayatine and

iz + AN + 1) (15)

= (1_ Zr)‘zk‘ +‘Zn,k+1

whereA is the constant associated with the order of terms and depenids assumed bounds of the higher order derivatives

of 8.

Let

z" :supK‘Zk”

. (16)

Then, taking the super mum oveyields
ZM™ < 7"+ ADE + At AC). (17)
Applying (17) repeatedly yields
7™ < 7%+ (n+1) AlAt? + At AX)
SinceZ° =0,
7]

n

1~ O (kdx, (n+1)At) < 2™

and

(n +1)At -t
Orsr — 0'(kDX, (n+DAL) s (n+1) At A(At +Ax?) -~ GasAt, Ax - O.

Thus, we see that for amyandt, as/At and AX approach 0 such th&kAX,(n +1)At) - (x,t), 8, approachef'(x,t)

. This completes the proof.
Lemma 2
The difference scheme (10) is stable.

Proof
The calculation is essentially the same as that done for coneerg&fe consider any sequence of partitions of the intervals

[0,1] defined by the sequence of incremeEﬂe(j} and the associated spac{%i}, and normsi“[n]j }
Specifically, we choose the spade to be the space ({ﬂ\/l j—1) vectors whereM ;A =1 and Iet”[ﬂ]j denote the sup.

norm on Xj . As we did earlier, we note thatif< % ,

n+l

U "™ =|a-2nug +rug, +u)
=|@- 2r)”U o+ r‘U e r‘U Q_l‘ (18)
= HU ’ k'
Then, taking the maximum ovkron both sides give us
o], <fu, (19)
If we apply inequality (19) repeatedly, we arrive at
o, <[ue (20)

Therefore, the difference scheme is stable.
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4. Numerical Solution

Applying the Neuman boundary conditidd, (0,t) =0 and 8, (,t) =0, we can write the difference scheme for O,

andi =N respectively as

90,/
2k 1+ &6 i
00'j+1=90,j+_h2[6’1,j‘Ho,j]+bk(1_9i0j)pe 0, ]

= @ N + &
: 2
h
A Pascal program was written to solve this scheme. (Seerfipp)
The results for p=1, 2, 3, 4, 10, 100, 1000 and vanaliges of€ is as shown:

Hn,-
7] [6n+1,j -0 ] + bk (1— en,j) pe %Hn,j

n,j+1 n,j

0.35

0.3

g, (xt)

P = 1000

Figure 3.25Graph of8j (xt) for p=1, 2, 3,4, 10, 100, 1000 &t=0.1, x=0.t

5. Conclusion
We have conducted a numerical study of reaction kinetics mogelyherization in the presence of material diffusion with
a particular focus on the reaction temperature using the iifieeence scheme.

1. We have shown that the solution of the difference scheme cosveog® wise to the solution of the initial value

problem.

2. We established that the numerical scheme is stable.

3. We showed that the reaction order significantly affects theeadg solution.

4. We showed that the higher the reaction order, the lower thgetatare required for the reaction.
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Appendix
Pascal Programme For Solving The Difference Scheme (10)

program UNSteady(input,output); Type value=array [0.100] of real; var X:array [0..10] of real; i,j:integer; kdual;
Q,Y:value;
const epsilon=0.01; b=0.8; n=1;m=4;
Procedure calculate; begin initialise; for j:=0 to 10 degin for i:=1to 4 do begin

Q[i, 1] := k*(QJi+1, 0]+QJi-1, O])/sqr(h)+k*b;

Q[0, j+1] :=k*(2*Q[1, j]-2*Q[0, j])/sqr(h)+Q[0,]+k*b*(1-QI0, jl)*exp(QI0, jJ/(1+epsilon*Q[O, j]));
Qli, J'gl] = E*(1+Q(£i+1, iI-2*Qli, jI+QI[i-1, j)/sar(h)+Qli, jl+k*b*(1-Q[i, j)*exp((Q[i, j]+1)/(1+epsilon*Qli, j]));
end; end; end;

writeln; write('The otput of the computation is presentedteln(‘for i:=0 to 10 and j:=0"); write('to 15 as beleyy:writeln;
writeln; for i:=0 to 4 do write(i:6); writeln;

calculate; writeout; readln; End
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