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Abstract 

 
 
A linear multistep hybrid method (LMHM)with continuous coefficients 

isconsidered and directly applied to solve third order initial and boundary value 
problems (IBVPs). The continuous method is used to obtain Multiple Finite Difference 
Methods (MFDMs) (each of order 5) which are combined as simultaneous numerical 
integrators to provide a direct solution to IVPs over sub-intervals which do not overlap. 
The convergence of the MFDMs is discussed by convenientlyrepresenting theMFDMs 
as a block method and verifying that the block method is zero-stable and consistent. The 
superiority of the MFDMs over the methods in Olabode and Yusuph [12] is established 
numerically. 
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1.0 Introduction 
 

The mathematical formulation of physical phenomena in science and engineering often leads to initial value problems of 
the form: 

( ) ( ) ( ) ( )0 0 1, , , ,y f x y y a y y a y aη η′′′ ′ ′′= = = =  (1) 

However, only a limited number of analyticalmethods are available for solving (1) directly without reducing to a first 
order system of initial value problems. Some authors have proposed solution to higher order initial value problems of 
ordinary differential equations using different approaches[1-5]. In particular [2] developed a class of hybrid collocation 
method for third order ordinary differential equations. Awoyemi[1] derived a p-stable linear multistep method for general 
third order initial value problems of ordinary differential equations which is to be used in form of predictor-corrector forms 
and like most linear multistep methods, they require starting values from Runge-Kutta methods or any other one-step 
methods. The predictors are also developed in the same way as correctors. Moreover, the block methods in [3] are discrete 
and are proposed for non-stiff special second order ordinary differential equations in form of a predictor- corrector integration 
process. Also like other linear multistep methodsthey are usually applied to the initial value problems as a single formula but 
they are not self-starting; and they advance the numerical integration of the ordinary differential equations in one-step at a 
time, which leads to overlapping of the piecewise polynomials solution Model. There is the need to develop a method which 
is self-starting, eliminating the use of predictors with better accuracy and efficiency. This study, therefore propose a block 
hybrid multistep method for the direct solution of third order initial value problems of ordinary differential equations. 

Recently,several researches [6-10]proposed LMMs for the direct solution of the general second and third order IVPs, 
which were showed to be zero stable and were implemented without the need for either predictors or starting values from 
other methods. Jator [11] used the LMMs developed for IVPs and additional methods obtained from the same continuous k-
step LMM to solve third order BVPs with Dirichlet and Neumann boundary conditions and also [12] developed a linear 
multistep method for the direct solution of initial value problems of ordinary differential equations for special third order 
initial value problem. We extended their methods into hybrid form by adding one off-step point at collocation.  The 3-step 
block hybridmethod is P-stable, consistent and more accurate than the existing one. Experimental results confirmed the 
superiority of the new scheme over the existing method. 
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The paper is organized as follows. In Section 2, we derive a continuous approximation Y (x) for the exact solution y(x). 

Section 3 is devoted to the specification of the methods and how the MFDMs are obtained.  Analysis, stability region and 
implementation of MFDM are discussed in section 4. Numerical examples are given in Section 5 to show the efficiency of 
the MFDMs. Finally, the conclusion of the paper is discussed in Section 6. 

 
2.0    Development of Methods. 
In this section, our objective is to derive hybrid linear multi-step method(HLMM) of the form 

1 1
3 3

0 0

r s

j n j j n j v n v
j j

y h f h fα β β
− −

+ + +
= =

= +∑ ∑      (2) 

Where jα , jβ  and vβ  are unknown constants and jv  is not an integer. We note that kα =1, 0jβ ≠ , 0α  and 0β  do not 

both vanish. In order to obtain (2), we proceed by seeking to approximate the exact solution y(x) of the form 

( )
1

0

,
r s

j
j

j

Y x l x
+ −

=

= ∑          (3) 

Where [ ], , jx a b l∈ are unknown coefficients to be determined and kr p≤1 0fs  are the number of interpolation and 

collocation points respectively. We then construct our continuous approximation by imposing the following conditions.  

( ) , 0,1.2,......, 1n j n jY x y j r+ += = −
      (4) 

( )n nY x fµ µ+ +′′′ =         (5) 

Equation (4) and (5) lead to a system of (r+s) equations which is solved by Cramer’s rule to obtainjl . Our continuous 

approximation is constructed by substituting the values of jl  into equation (3). After some manipulation, the continuous 

method is expressed as 

( ) ( ) ( ) ( )
1 1
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+ + +
= =

= + +∑ ∑    (6) 

where ( )j xα , ( )j xβ  and ( )v xβ  are continuous coefficients. We note that since 

equation (1) involves first and second derivatives, the first and second derivative formula 
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∑ ∑

∑ ∑
  (7) 

equation (7) is easily obtained from (6) and is then used to provide the first and second derivatives for the methods by 
imposing the condition 

( ) ( ) ( ) ( ),Y x x Y x xδ γ′ ′′= =        (8) 

( ) ( )0 0,Y a Y aδ γ′ ′′= =        (9) 

 
3.0       Specification of the methods 
Our methods are obtained from section two and expressed in the formof (2) given by 

( ) ( ) ( ) ( )
1 1

3 3

0 0

r s

j n j j n j v n v
j j

y x x y h x f h x fα β β
− −

+ + +
= =

= + +∑ ∑    (10) 

with the following specification r=3, s=5, k=3,( ) , 0,1,....,8i
i x x iγ = =  we also express  

( )j xα , ( )j xβ  and ( )v xβ as functions of 
( )nx x

t
h

−
= as follows: 
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The MFDMs are obtained by evaluating (10) at 
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In particular, to start the initial value problem for n = 0, we obtain the following equations from (9):  
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It is worth noting that the derivatives are provided by  
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4. Analysis and Implementation of the Method 
Following [13] and [4] we define the local truncation error associated with the conventional form of (2) to be the linear 
difference operator 

( ) ( ) ( ){ }3 3

0

;
k

j j v n v
j

L y x h y x jh h y x jh h fα β β +
=

′′′  = + − + +  ∑   (15) 

Assuming that y(x) is sufficiently differentiable, we can expand the terms in (15) as a Taylor series about the point x to 
obtain the expression 
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According to [14], we say that the method (5) has order p if 
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Our calculations reveal that the methods (11) to (14) have order p = 5 and error constants given by the vector 
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In order to analyze the methods for zero-stability, we normalize (11) to (14) and write them as a block method given by the 
matrix difference equation 
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matrices A0, A1, B0 and B1 are defined as follows:  
A0 is an identity matrix of dimension 4 
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It is worth noting that zero-stability is concerned with the stability of thedifference system in the limit as htends to zero. 
Thus, as 0h → , the method (17) tends to the difference system 

0 1
1 0A Y A Yµ µ+ − =  whose first characteristic polynomial ( )Rρ  is given by 

 ( ) ( ) ( )1det 310 −=−= RRARARρ        (18) 
Following Fatunla [13], the block method (17) is zero-stable, since from (18), 

( ) 0 1 1...,jR Satisfy R j kρ = ≤ =  and for those roots with jR =1, the multiplicity does not exceed 2. The block 

method (17) is consistent as it has order 1P f . According to [14], we can safely assert the convergence of the block 
method (17). 
It is vital to note that the main method given by (10) can be used as anumerical integrator directly and singly in the 
conventional way on overlapping sub-intervals. However, our method is implemented more efficiently by combining 
methods (11) to (14), each of order five with relatively small error constants, as simultaneous integrators for IVPs without 
looking for any other methods toprovide the starting values. We proceed by explicitly obtaining initial conditions at 

3, 0,3,..., 5nx n N+ = −  using the computed values( ) ( ) ( )3 3 3 3 3 3,n n n n n ny x y x and xδ δ λ λ+ + + + + += = = over sub-intervals

[ ] [ ]0 3 3, ,... ,n Nx x x x−  which do not overlap(see [10]). For instance, ( )1 2 30, , ,
T

n y y y=  are simultaneously 

obtainedover the sub-interval[ ]0 3,x x  as y0 is known from the IVP, for ( )4 5 63, , ,
T

n y y y=   are simultaneously obtained 

over the sub-interval[ ]3 6,x x , as y3is known form the previous block, and so on. Hence, the sub-intervals do notover-lap 

and the solutions obtained in this manner are more accurate that thoseobtained in the conventional way. 
 
4.1 Stability Region of Block Method 
To compute and plot absolute stability region of the block methods, the method of section three are reformulated as general 
linear methods expressed as 
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Substituting the values of A, B, U and V into the stability matrix ( ) ( ) 1
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function  
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Using thematlab package we were able to plot the region of absolute stability of the block method as shown in Figure4.1. 
Absolute Stability Region of Block Method 

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 167 – 174     



172 

 

A Fifth Order Hybrid Linear Multistep method …  U. Mohammed     J of NAMP 
 

 
Fig 4.1: Absolute Stability Region 
The stability region for the methods has large interval of absolute stability (-4, 0) since its region of absolute stability 
contains the left half- plane ( ){ }R e 0Z C Zε p  

5.0 NumericalExperiment  
In this paper we use proposed block hybrid methods and compare their result with three step block methods proposed by 
[12] to solve special third order (IVPs) , in order to test for efficiency of the schemes derived. 
Example 5.1 

xexy

solutionexactandyy

yconditioninitialwithyy

−=

=′′−=′
=−=′′′

)(

1)0(,1)0(

,1)0(,

 
Table 5.1: Comparison of errors for problem 5.1 

x Exact solution 
xexy −=)(  

Computed 
Method 

 Error Solution by Olabode 
and Yusuph [12] 

0.1 0.904837418 0.904837418 0.00000E+00 6.35960E-10 

0.2 0.818730753 0.818730753 3.00000E-10 2.37798E-09 
0.3 0.74081822 0.740818221 4.00000E-10 4.18172E-09 
0.4 0.670320046 0.670320046 0.00000E+00 5.63564E-09 
0.5 0.60653066 0.60653066 2.00000E-10 7.01263E-09 
0.6 0.548811636 0.548811637 5.00000E-10 7.59403E-09 
0.7 0.496585304 0.496585304 4.00000E-10 6.39141E-09 
0.8 0.449328964 0.449328964 1.00000E-10 2.41722E-09 
0.9 0.40656966 0.406569659 7.00000E-10 4.75940E-09 
1.0 0.367879441 0.367879441 1.00000E-10 1.52286E-08 

Example 5.2 

2
2

cos3)(

2)0(0)0(,1)0(,sin3
2

−+=

−=′′=′==′′′

x
xxy

solutionexactandyyyconditioninitialwithxy

 
Table 5.2: Comparison of errors for problem 5.2 

x Exact solution 

2
2

cos3)(
2

−+= x
xxy

 

3-step block 
hybrid Method 
y-computed 

Error in 3-step 
block hybrid 
Method 

Solution by 
Olabode and 
Yusuph [12] 

0.1 0.990012496 0.990012496 2.00000E-10 1.65922E-10 

0.2 0.960199733 0.960199733 9.99999E-11 4.76275E-10 
0.3 0.911009467 0.911009466 6.00000E-10 6.23182E-10 
0.4 0.843182982 0.843182981 1.00000E-09 2.91345E-10 
0.5 0.757747686 0.757747685 1.00000E-09 8.71118E-10 
0.6 0.656006845 0.656006843 2.00000E-09 3.92904E-09 
0.7 0.539526562 0.53952656 2.00000E-09 9.55347E-09 
0.8 0.410120128 0.410120126 2.00000E-09 1.80415E-08 
0.9 0.269829905 0.269829902 2.70000E-09 3.03120E-08 
1.0 0.120906918 0.12090692 2.00000E-09 4.73044E-08 
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Example 5.3 

x

x

exxy

solutionexactandyyyconditioninitialwithey

++=
=′′=′==′′′

222)(

5)0(,1)0(,3)0(,

 
Table 5.3: Comparison of errors for problem 5.3 

x Exact solution 
xexxy ++= 222)(  

3-step block 
hybrid Method 
y-computed 

Error in 3-step block 
hybrid Method 

Solution by Olabode 
and Yusuph [12] 

0.1 3.125170918 3.125170918 0.00000E+00 -7.5647E-11 

0.2 3.301402758 3.301402758 0.00000E+00 1.83983E-09 
0.3 3.529858808 3.529858807 1.00000E-09 4.42400E-09 
0.4 3.811824698 3.811824697 1.00000E-09 1.03587E-08 
0.5 4.148721271 4.14872127 1.00000E-09 1.12999E-08 
0.6 4.5421188 4.542118799 1.00000E-09 1.46095E-08 
0.7 4.993752707 4.993752706 9.99999E-10 2.05295E-08 
0.8 5.505540928 5.505540927 1.00000E-09 1.95075E-08 
0.9 6.079603111 6.079603109 2.00000E-09 1.08431E-08 
1.0 6.718281828 6.718281822 6.00000E-09 1.54095E-08 

 
Example 5.4 

x

x

exxy

solutionexactandyyyconditioninitialwithey

−+=
=′′−=′=−=′′′

222)(

3)0(,1)0(,1)0(,

 
 
Table 5.4: Comparison of errors for problem 5.4 

x Exact solution 
xexxy −+= 222)(  

3-step block 
hybrid Method 
y-computed 

Error in 3-step block 
hybrid Method 

Solution by Olabode 
and Yusuph [12] 

0.1 0.914829082 0.914829082 1.00000E-10 7.24352E-10 

0.2 0.858597242 0.858597242 0.00000E+00 3.83983E-09 
0.3 0.830141192 0.830141193 8.00000E-10 9.32400E-09 
0.4 0.828175302 0.828175303 7.00000E-10 1.69587E-08 
0.5 0.851278729 0.85127873 8.00000E-10 2.60999E-08 
0.6 0.8978812 0.8978812 3.00000E-10 3.55095E-08 
0.7 0.966247293 0.966247293 3.00000E-10 4.51295E-08 
0.8 1.054459072 1.054459073 1.00000E-09 5.45075E-08 
0.9 1.160396889 1.16039689 1.00000E-09 6.28431E-08 
1.0 1.281718172 1.281718168 4.00000E-09 6.95410E-08 

 
Example 5.5 (BVP) 

1)1(,0)0(,0)0(, ==′=−=′′′ yyyconditionboundarywithyy  
Exact solution is given by 

 
Table 5.5: Numerical Results of Example 5.5 

x Exact Solution y(x) 3-step block 
hybrid Method y-
computed 

Error in 3-step block 
hybrid Method 

0 0 0 0 

0.1 0.0101694033 0.01016880955 
 

0.2 0.0406703794 0.04067049268 
 

0.3 0.0914802071 0.09147962996 
 

0.4 0.1625298840 0.1625301465 
 

0.5 0.2536955573 0.2536950379 
 

0.6 0.3647657501 0.3647661921 
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0.7 0.4954347975 0.4954343790 
 

0.8 0.6452688564 0.6452694991 
 

0.9 0.8137014809 0.8137012013 
 

1 1 1 0 
 
Conclusion 

We have derived a three-step continuous HLMM from which MFDMs are obtainedand applied to solve ( ),y f x y′′′ =  

without first adapting the ODE to an equivalent first order system or reducing it to an initial-value problem. The MFDMs are 
applied as simultaneous numerical integrators over sub-intervals which do not overlap and hence they are more accurate than 
SFDMs which are generally applied as single formulas over overlapping intervals. We have shown that the methods are 
convergent and have large intervals of absolute stability, which make them suitable candidates for computing solutions on 
wider intervals. In addition to providing additional methods and derivatives, the continuous HLMMcan be used to obtain 
global error estimates. Our future research will be focused on adapting the MFDMs to solve third order partial differential 
equations. 
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