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Abstract

In this Paper, we consider the derivation of a continuous formulation of a linear
multistep method for ordinary differential equations by collocation methods without the
use of predictor-corrector approach. All the discrete schemes used in each of the block
method at k=2 and k=3 derived, come from a single continuous formulation and its
derivative. The block suggested approach is self-starting and produce parallel solution
of the ordinary differential equations (ODES) which minimizes the cost of computation
compared to other variants. Both block methods at k=3 and k=2 converges to the exact
solutions with the two Numerical examples tested with this approach.

Keywords: Uniform order, Block methods, first order odestial value problem, self starting and paralldusions.

1.0 Introduction
The Traditional multistep methods can be made nantis through the idea of multistep collocationtrodt(MC) see [1],
[2], and [3] .

These earlier works focused on constructionootiouous multistep (CM) methods by employing tr@latation method.
The continuous multistep methods produce piece padgnomial solution over k-step[, x,,,] for the first order system
of ODES of the form

y=fk,y) a<x<b, y@ =y (1)
The aim of this paper is to demonstrate usirsingle continuous formulation and its derivativederive some discrete
schemes which form the block scheme to solve (Excty without requiring a starting value and spapdf computational
process, since all the solutions were obtainechet .0

2.0 The Multistep Collocation Method
Following [3], Consider the collocation methdefined for the stepx],, x,, ] by

y(x) = X520 (%) ynaj + RIS B f(x y (%)) 2
Where t and m denotes respectively the number tefgnlation and collocation points used. This rodtlis typically
expressed as

P(E)yn = h6(E)fy 3)
Where E is the shift operator specified by
Ey, = yn+; While p andé are the characteristic polynomials and are gieen a

p(r) =Xisoa; x', 8(r) = LT B fx! 4)
v, IS the numerical approximation to the Exact solutyéx,,) andf,, = f (x,, v»)-

3.0 Derivation of the Present Methods
(@) Block method of orde3, 3 |7 at k=2
We approximate solution to (1) in the form
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Y& =Yg x) , j=01(k+1) (5)
y'(x) = X1 ja; (6)
Where,a; are the parameters to be determirteaiidm are points of interpolation and collocation. &feally, for this
method at k 2, when equation (6) is collocated at= Xny J= 0, (k — 1) and also (5) is interpolated at
X=X, J= 0, (k — 1) , we get the following system of non Linear eqoiasi
ag + a,x, + ax2 + azx3 =y,
Qo + A Xpiq + QX4 + A3Xniq = Ynaa
a, +2a,x, + 3azxz =,
Ay + 205X 41 + 3a3%5 11 = fria (7)

When equation (7) is arranged in matrix equatiomfave have

[1 o Xn x,ﬁ] a Y,
n
I 1 Xp4q xv%+1 x12{+1 I a(l) Vn+1
2 =
| 01 2xn 3;Cn | a, fn (8)
l0 1 2x,41 3xn+1J as fr+1

Wherex; (x) and f;(x) are obtained as a continuous coefficients. Spadiiji the proposed solution takes the form
y(x) =g ()yn +¢1 () Ynr1 + h{Bo () fr + B (X) frn41} ©)

We used Maple 11 Software to invert the matrix Rduation (8) to determine values

a;,j = 0,1,k + 1 and finally obtained the continuous formulatiortiug form

_ 3 _ 2 3_ _ 2 ol 3 _ 3 _ 2
y(x) _ [Z(x Xn+1) :—lih(x Xn+1) ]yn n [h 3h(x xn+’11)3 2(x—Xn+1) ]Yn+1 n [(c=xpt1) +))112(x Xn+1)2]fn +[(x _xn+1)3 I

2h(x — xpp1)? +h2 121 (10)

h2

The first derivative of equation (10) gives

y = [6(x—xn+1>2;6h(x—xn+1) v + [—6h(x—xn+1’33—6(x—xn+1)2]yn+1 +[s(x—xn+1>2+;:(x—xn+1>]fn + [3(x—xn+1)2h+24h(x—xn+1) +
12| fis (12)

Evaluating both (10) and (11) at= x,,,,, gives the following discrete schemes.

Yn+2 + 4'yn+1h_ Syn = Zh(fn + 2fn+1)
Yn+1 = Yn = E(fn + 8fn+1 — fna2) (12)

Equation (12) has Ord¢8, 3 ]” with Error constant, "

(b) Block method of ordgd, 4,417 at k = 3
We interpolate equation (5):at x,,; ,j = 0, (k — 2) and collocate equation (6) at
X = Xn4j,j =0, (k — 1), we get the following system of non Linear eqoasi

Ag + a1, + ayx2 + azx3 + a,xs =y,
Ao + A1Xni1 + QXF4q + A3X54q F AXy = Yngs
a, +2a,x, + 3azxZ+daxi=f,
Ay + 205X 41 + 3a3%5 11 H4XS 1 =
Ay + 205X 42 + 3A3%5 1,40 15 = fran (13)
When equation (13) is arranged in matrix equat@mfwe have
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2 3 4
1 x, x5 x5, X
1 2 3 .4 Qo In
Xn+1 Xn+1 Xn+1 Xnt1 | |4 y
01 2x, 3¢ 4¢3 || _[F"
I o SEn M apf = | fu (14)

0 1 2xp41 3X541 4%54 as fa+1
0 1 2xpip 3x5424%042 | lay fn+2

The proposed continuous formulation takes the form.
y(x) =o¢g (¥ +0¢ () Yns1 + h{Bo(D fo + B1(X) fasa + B2 (%) fr2} (15)

We used Maple 11 Software to invert the matrix Dequation (14) and obtained values &y j = 0,1,k + 1. We finally
obtained the continuous formulation of form.

y(x) =
h* —4h? (x—xp)%+4h(x—xp)3 - (x—2xp)* 4h2(x—x )2—4h(x —xp)3+(x—xp)*
[ n h4 n n ] + [ n n n ]yn+1 +
3 )—29 h2 (x—x. )2 33
[12h3 (x—x5)-29 h%(x xniz:—lizh(x X0 )3=5(x—xy) ]fn [ 5h2 (x _ xn)z + 7h(x _ xn)3 _ 2(x _ xn)4 ] f3n’:r31
[hz(x—xn)Z—Zh(x—x-,;)3+(x—xn )4]fn+2 (16)
12h
The first derivative of equation (16) gives
y'(x) =
—8h2(x—xp)+12h(x—xp)%—4(x—xp)3 8h2 (x—xp)—12h(x—xp) % +4(x—xp)3
n h4 n n ]yn + [ n h4 n n ] n+1 +
3_cgh2(x— V2 VRN
[12h°-s8h7Cx )OO ) 200 ) Vn 4 [—10R2(x — x,) + 21h(x — %)% — 8(x — %)% | ey
[th(x—xn)—6h(x_xn;2+4'(x_xn)S]fn+2 (17)
12h
Evaluating equation (16) at= x,,, and x = x,,5 . Also equation (17) at = x,,,3 gives
Vn+2 — - [fn+2 + 4‘fn+1 + fn ]
Vn+3 — 9yn+1 + 8yn - 3h[fn+2 2fn+1 - fn]
Yn+1 — - [fn+3 5fn+2 + 19fn+1 + 9fn] (18)

The Block Scheme of (18) are of Orddrs 4,4 17, with error constantﬁ—

hut __]T
90’5’ 720

4.0 Implementation Strategies

The proposed Block method ak = 2,n=0,2,4,6, 8,10 ... and Block method att =3, n= 0,3,6,9, ........, when
applied it with tested problems gives all the regdisolutions at once. As such with these new Btoekhods proposed, we
expect to gain in terms efficiency, accuracy anst effectiveness.

Example 1
- X y ,
y(0)=1 h=

1
Analytic solutionis  y(x) = e2*
Example 2
y'—2y=e™,
(0) = 3 h=0.1
y - 4! - Y

Analytic solutionis  y(x) = (e* —%)e‘zx
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Table 1: Approximate Solution Of Example &,= 0.1

. Badmus and Mishelia J of NAMP

x | Theoretical Solution | Block Method k=2 Block Method k=3
0.1 1.005012521 1.004999662 1.005013050
0.2 1.02020134 1.020201337 1.020201517
0.3 1.04602786 1.046012304 1.046028759
0.4 1.083287086 1.083286999 1.083290177
0.5 1.133148453 1.133126935 1.133150363
0.6 1.197217363 1.197216935 1.197221844
0.7 1.277621313 1.277587256 1.277631600
0.8 1.377127764 1.377126114 1.377135511
0.9 1.4993025 1.499245761 1.499316976
1.0 1.648721271 1.648716177 1.648750627
Table 2Comparison of Exact Errors of Example 1
x | Block Method k=2 Block Method k=3
0.1 1.2859 EG5 5.29 E-07
0.2 0.3 EO8 1.77 E -07
0.3 1.5556 35 8.99 E -07
0.4 8.7 EO8 3.091 E -06
0.5 2.1869 EO5 1.91 E -06
0.6 4.28 E-07 4.481 E-06
0.7 3.4057 B35 1.0287 E-05
0.8 1.65 BG5S 7.749 E-06
0.9 5.6739 E-05 1.4476 E-05
1.0 5.094 E)6 2.9356 E-05
0.00006
0.00005
0.00004
—¢—Block Method k=2
0.00003
== Block Method k=3
0.00002
0.00001
0 )
1 2 5 6 7 9 10

Fig.1:Error graph of examplel
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Table 3: Approximate Solution of Example 2,= 0.1

. Badmus and Mishelia J of NAMP

x | Theoretical Solution | Block Method k=2 Block Method k=3
0.1 0.7001547298 0.7001637263 0.7001559430
0.2 0.6511507416 0.6511490804 0.6511510272
0.3 0.6036153117 0.6036194834 0.6036167761
0.4 0.557987805 0.5579856884 0.5579896313
0.5 0.5145607994 0.5145623661 0.5145619294
0.6 0.4735130831 0.4735110823 0.4735146427
0.7 0.4349360628 0.4349363021 0.4349376555
0.8 0.3988548346 0.398831777 0.3988559551
0.9 0.36522449377 0.3652445657 0.3652461726
1.0 0.3340456204 0.3340443581 0.3340467836
Table 4:Comparison of Exact Errors of Example 2
x | Block Method k=2 Block Method k=3

0.1 8.9965 36 1.2132 E-06

0.2 1.6612 E-06 2.856 E-07

0.3 4.1717 E-06 1.4644 E-06

0.4 2.1166 E36 1.8263 E-06

0.5 1.5667 D6 1.13 E-06

0.6 2.0008 E36 1.5596 E-06

0.7 2.393 B37 1.5927 E-06

0.8 1.6569 E-06 1.1205 E-06

0.9 2.0072 B35 2.16789 E-05

1.0 1.2623 E-06 1.1632 E-05
0.000025 -
0.00002 -
0.000015 -

—4—Block Method k=2
0.00001 - ——Block Method k=3
0.000005 -
0 .

Fig.11: Error graph of example 2
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5.0 Discussion of Results

Table 1 shows the numerical solutions of examp@ékl= 2,k = 3 and the theoretical solution is also given. Table 2

shows the comparison of exact errors of example has been observed that block methokl at3 performed well by
converging to the exact solution (See error g@dfigure 1)

Table 3 shows the approximate shows the approxiswdtetion of example 2 & = 2 andk = 3 with the Theoretical
solutions.

Table 4 shows the comparison of exact errors ofngka 2. It has been observed that block methdd-at2 performed
well by converging closed to exact solutions (Seereggraph of figure 11).

Conclusion
All the discrete Schemes used in each of the bioekhod were all derived from a single continuomsriula and its

derivative which are of uniform order of accuradyhe efficiency of the two block schemes were tesigtth the two
numerical examples solved. Both results convetgdke exact solution with smaller error differeraoed also obtained in
block form which speed up the computational precasd as such gain the efficiency, accuracy anteftective in the
implementations. Based on the error graphs, bloethad atk = 3 performed better in the probleml1 while block method
k=2 performed well with second problem tested.
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