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Abstract 

 
The Hansen-Sengupta operator is discussed in the light of circular interval 

arithmetic for the algebraic inclusion of zeros of  nonlinear interval systems of 
equations which is known to be efficient for handling such problems. It was the aim of 
this paper to extend such good convergence behavior possessed by Hansen-Sengupta 
operator on the well known Trapezoidal-Newton functional iterative method. It was 
discovered that the Hansen-Sengupta method applied on Trapezoidal-Newton method 
will produce not only overestimated results but also results that are not finitely bounded. 
This was demonstrated by numerical example wherein we compared notes with results 
obtained from Uwamusi [16] and concluded that Hansen-Sengupta method applied on 
the Trapezoidal-Newton method indeed, diverges. 
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1.0 Introduction 
We are interested in the solution of nonlinear interval system of equations 
                   ( ) 0F x =         (1.1) 

where 

: n nF D IR IR⊂ → , and [ ] [ ]{ }1 1[ ] , ... , n
n nx x x x x IR= ⊂  is a parallelepiped parallel to the axes often called a box 

for each  i ix x x≤ ≤ . 

We assume that F is a smooth homeomorphism mapping with 
1( ) nF C D IR∈ ⊆ . 

We are interested in bounding the solution of (1.1) or establish their that no such results exist by some efficient interval 

methods. This means that given a box : 1 1 2 2[ ] [ , ] [ , ] ... [ , ] n
n nX x x x x x x IR

− − −

− − −
= × × × ⊂ , evaluating iF  of the function F 

with desired interval based methods will produce intervals [ ]iF  of the function F which are guaranteed to validate and 

enclose the zeros of F even in the presence of nonlinearities and round off errors. 
Rump[12] proposed a method for reducing the width of co-multiplication of intervals. The main motive behind this paper is 
to present a class of interval based algorithms formulated in such a way that Rump’s interval operations are applicable in the 
contexts of Hansen-Sengupta[5] which are able to either guarantee that the system has no solution or to yield sharp bounds of 
the results computed. 
By repeatedly solving the linear interval system 

ˆ( )( ) ( ), , iJ x x x f x x X x D− ∋ − ∈ ⊆ ,     (1.2) 
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 from 
        ˆ ˆ( ) ( ) ( )( )f x f x J x x x∈ + − ,              (1.3)  

one obtains an equivalent system(1.1) where  J(x) is denoted by A(x)  in the form: 
ˆ( )( ) ( )A x x x b x− ∋ − .       (1.4) 

Method (1.4) does not only have the capacity of taking into consideration the problem of dependencies but also has a simpler 
structure and its hull is also straight forward. Thus, it follows that 

( )1 ( ) ( )([ ]) ( ), ( 0,1,..., )k k kx N x x k+ = =I ,    (1.5)  

where 
( )([ ])kN x is the interval Newton method. 

Now suppose instead of solving method (1.4), we consider 
^ ^ ^1( ) ( ) ( ) ( )( ) ( ) ( ( ))( )k k k k

o
f x f x J x t x x x x dt= + + − −∫    (1.5) 

where   
^

, [0,1]x x ID and t∈ ∈ . 

 We can estimate 
^

( ) ( )( ( ))k kJ x t x x+ −  in the interval [0,1] at the point t=0. 

As discussed in Shokri[13],  we estimate (1.5) by the trapezoidal rule in the form: 
^ ^

( ) ( ) ( )1
0 ( ) [ ( ) ( )]( )

2
k k kf x J x J x x x= + + −  ,             (1.6) 

where from, 
 we obtain an iterative formula 

( )( 1) ( ) ( ) ( 1) 1 ( )ˆ2[ ( ) ( ] ( kk k k k kx x J x J x f x x+ + −= − + I    (1.7) 

and, 
( 1) ( ) ( ) ( )ˆ ( ) ( )k k k kx x J x f x+ = −  ,     (1.8) 

is the Newton step length which is a predictor. 
In the meantime, we are inspired by the following well known definitions which may be useful in this paper. 
Definition (1.1)  Wozniakowski[15].  

An iteration is said to be numerically stable if it produces a sequence 
( ){ }kx  of approximations of the solution x∗  such that 

for large k the relative error 

( )kx x

x

∗

∗

−
 is of order )),(1( dFcond+η  and η  is the relative machine precision and d is a 

data vector. 
Definition (1.2), Wozniaskowski[15].   

An iteration is said to be well behaved if a slightly perturbed ( )kx  is an almost exact solution of a slightly perturbed problem. 
This implies that  

( ) ( ) 2( , ) 0( )k k
kF x x d dδ δ η+ + =  where 

( )

( )

k

k

x

x

δ
 and 

kd

d

δ
 are of order η . 

The remaining parts of the papers are arranged as follows: 
Section 2 is a review of terminologies used in the paper as well as the interval operation due Rump[12]. In section 3 we 
discuss the method of Trapezoidal-Newton operator in the sense of Shokri[13] wherein we incorporate Hansen-Sengupta[5] 
method. Basic properties of convergence characteristic of Hansen Sengupta method are described. We implemented the 
methods in section 4 using sample numerical problem taken from Uwamusi[16]. It is shown that Trapezoidal Newton method 
with interval approach has no rational map with finite intersection property. Finally we ended the paper with conclusion 
drawn from the numerical results obtained from the given example.   
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 2.0             Notation 
We denote 

n nxnx IR and A IR∈ ∈  to signify the set of interval vectors and respectively interval matrices. 

An interval vector x is said to be thick if there exist 1x X∈  and 2x X∈  with 1 2x x≠ such that the width ( ) 0w x > .  An 

interval vector is said to be thin if for all 1x X∈  and 2x X∈ with 1 2,x x= then the width 2 1( )w x x x= − . 

We hereby introduce interval operation due to Rump[12] as follows: Let ( , )a r x R x a r = ∈ − <   where a, is the 

centre and r the radius.  The basic interval operations ( , , , /)o+ −  such that for intervals 

{ }1 1 1 2( , ) ( , ) , , , /a a r and b b r IR and o= = ∈ ∈ + −o  , 

there follows { },xoy x a y b aob∈ ∈ ⊆  

With these, we have that: 

1 1 1 2 1 1 1 2, , ,a r b r a b r r< > ± < >=< ± + > ,    (2.1) 

1 1 1 2 1 1 1 2 1 1 1 2, , ,a r b r a b a r b r r r< > ⋅ < >=< + + ,   (2.2) 

1
1 1 1 2 1 2 1 2, / , , . ,a r b r a r b r −< > < >=< > < >    

where  1 20 ,b r∉< > .   (2.3) 

Inclusion isotonicity for intervals is implied by 

1 1 1 2, ,a r b r< >⊆< >  if and only if 1 1 2 1 1 1 1 1, ,b a r r a r a r− ≤ − − < >=< − > . 

Let note that these operations hold for commutativity and associativity but fail woefully for distributivity except for its 
subdistributivity, i.e. ( )a b c ac bc± = ±  for , ,a b c IR∈ .  A disk inversion due to Carstensen and Petkovic[4] in the 

form of complex plane is adopted for our purpose as follows 

{ } 11

2 2 2

2

[ ] ,

1
, ,

(1 )

ija a r

r

r a ra
a

−− = =

 
 
 
 

− −
 
 

      (2.4) 

1
, ,

( )

r
a r

a a a r

   > −  
      (2.5) 

2 22 2
, ,

a r
a r

r a r a

 −  < 
− −  

      (2.6) 

 
The aim of using of using these is to compute rigorous bounds on the solution of system (1.1) with computable 
overestimation factor that is supposedly small.  Such bounds are expected to enclose truncation, rounding and often modeling 
errors. The use of different specific interval machinery as inner enclosures to check the validity of the quality of such bounds 
obtained dictates our interest in this paper. 
 
3.0       The Method 
Central to our discussion, we review the following definition. 

Definition 3.1 Neumaier[9]. We say that a sequence of interval matrices [ ]kA converges if the lower and upper bounds 

converge, or equivalently, if the midpoints and radii converge.  This means that 
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
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




∞→



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
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
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=
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)(
limlim )()( kk Arad

k
A

k
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=









∞→
 

Thus the sequence 

( ) (1) ( ) ( 1).....o k kA A A A +⊇ ⊇ ⊇ ⊇ ⊇  of nested interval matrices converges to the limit ( ) ( )lim k kA A
k k o

=
→ ∞ ≥

I
 

Theorem 3.2, Alefeld[1].  

Let : n nF D IR IR⊂ →  be continuously differentiable and assume that ( ( ([ ] ))oIGA f x′ exists for some interval vector  

Dx o ⊆][  
Assume that ([ ] )of x′  exists  

(a)   if ([ ]) [ ]N x x⊆         (3.1) 

for some [ ] [ ] ox x⊆  then f has a zero x* in [x] which is unique even in [x]o. 

Assuming further that  

( ) 1Qρ <   where /( ([ ] ([ ] )o oQ I IGA f x f x
−

′= − ;   (3.2) 

 (b)  if  f has a zero x* in [x]o then the sequence {[ ] }k k ox ∞
= defined by 

( )1 ( ) ( )([ ]) [ ], ( 0,1,....k k kx N x x k+ = =I ) ,    (3.3) 

 is well behaved,   
lim

* [ ] [ ] *k kit
x x and x x

k
∈ =

→ ∞
. 

In particular, 
( )

0{[ ] }k
kx ∞

=  is monotonically decreasing and x* is unique in [x]o. 

Moreover, if 
o

ij xxfornjixdxfd ][][,1,0,][)]([ ⊆∀≤≤≥≤′
∞

αα
, 

then 

0,][][ 2)()1( ≥≤ ∞
+ ηη kk xdxd

, 
 

(c)  [ ] [ ] 0ko koN x x =I  for some 0k if≥ and only if ( ) 0f x ≠  
0[ ]x x∀ ∈ . 

Proof: See Alefeld[1 and 2] for example.  
 
Theorem 3.3,  Neumaier[9]. 

Let nxnA IR∈  be an H-matrix with positive diagonal elements and let n nIR IR→ be continuous, diagonal and isotone.  

Then the function : n nf IR IR→ defined by ( ) ( )F x Ax Q x= +  has a unique zero* nx R∈ .  Moreover the inequality  

*x x r− ≤ ,        (3.5) 

holds for every nonnegative vector nr R∈  satisfying 

( )A r f x< > ≥ .       (3.6) 

 
The Hansen-Sengupta [5] method is defined by 

( 1) ( ) ( )( , ) ( , ( ) ( , )k k k
DH x x x RA RD rad A abs x Rb x+= = Γ ⋅ + ,  (3.7) 
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where abs(x) denotes interval extension of the absolute value function that should not be confused with x  and that in the  

limit  ( , , )x RA a x∞ ∞= Γ ,       (3.8) 

where it is set that: 

. ( ) ( ) Da RD rad A abs x Rb∞= +  ,     (3.9) 

( )

( )

i ij
j i

i

ii

a R A

x
R A

−

≠∞
−

  −  
  ⊆

∑
      (3.10) 

and 

1
( ) ( ( ) ( )

( )i i kij
j iii

rad x Rad a RA rad x
RA

∞ ∞

≠

≤ +∑  .           (3.11) 

The numerator in equation (3.10) may contain zero in some cases. By the definition of optimal preconditioner in Kearfott[6] 

and due to analysis given in Kearfott and Xing[7], we are able to conclude that inf( ) 1.iiR A
−  = 

 
 

Thus the width w of the solution vector is then guided by 

( ) ( ) ( )1

2

( ) ( ) ( )k k k
ij ij k k

j
j i

w x x w RF x R A x X+

=
≠

 
  − = + −  
  

∑  . 

The preconditioned system (3.7) has an M- matrix centered about the identity matrix I with right hand vector in the form 
                    [ ]M x r= ,                                        (3.12) 

Where   ,n n nM IR and r IR×∈ ∈ . 

That means 0ij ijM M
−

−

= > for i k≠  and that 2ii iiM M
−

−
+ = . 

The solution set of method (3.7) is bounded by the inequalities: 

( ) ( )

( ) ( )

M x D mid r rad r

M x D mid r rad r

−
−

≤ +

≥ +
 

where D is the diagonal matrix defined by 









≤=−
≥=

≠
=

01

01

0

i

iij

xandjiif

xandjiif

jiif

D

 
Shi and Tian[14] obtained inequalities for method (3.7) in the  
form: 

)14.3(,)()(

)13.3(,)()(

ijrradrmidxMxM

and

rradrmidxMxM

jj
jk

kjkjjj

iij
ij

ijiii

≠∀+=+

+=+

∑

∑

≠ −−

≠ −−

   

, ( 3 . 1 5 )

, ( 3 . 1 6 )

i i i i i i j j i
j i

i i i i i i j j i
j i

M D x M x r

M D x M x r

− − −

≠

− −≠ −

+ ≥ −

+ ≤ −

∑

∑
 

where from the following are valid: 
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( )1 ( 1)
,

2 2

( _1) ( 1)
.

2 2

ii i ii i

ii i ij j
j i

ii i ii i
ii i ij j

j i

D r D r
M x M x

D r D r
M x M x

− −

− ≠ −

−
− −

−

≠

− +
+ ≤ +

++ ≥ +

∑

∑

           

Setting ( )1 2 1 1, ,...., , , ,...,
T

i i i nx x x x x x x− +′ = we can infer from the analysis presented in Rohn [11], that  

MrxxxM ≤+−′ )(
. 

Thus  
/(( ) ) ) ( ) ( )i i i i i ix x b I A x b radb A x r A x′ ′′ ′′= = + − ≤ + = +  where A′′  is a matrix of perturbation bound. With 

the above exposition we infer that Hansen-Sengupta method converges for any starting point for the interval nonlinear 
systems of equations. 
 
4.  Example: 
We illustrate our discussion with the following problem discussed in Uwamusi[16] 

2 2
2 1

2 2 2
1 1 3 3 2

2 2
2 2 3

( ) 31 1
4 2 4

3

( ) 3

1 3

( , , ), 0.01o

x x

F x x x x x x

x x x

x ε

 −


= + + −
 + + −

= =

 

 
Table 1:    Results Using Trapezoidal Newton Method (1.7) 

Iterations Results in midpoint-radius vector 
∞

)( )(kXF
 

1 [0.33169161,0.012680616]  
[0.5362032,0.01241961] 
[0.794301886,0.006144126] 

2100118213.2 −×  

2 [0.337703974,0.000558556] 
[0.585171538,0.0060343] 
[0.801821044,0.00038168] 

310153693.1 −×  

3 [0.338826244,0.000003618] 
[0.586294836 0.0000038] 
[0.799870224,0.000001674] 

2100659344.1 −×  

4 [0.341908146,0.000000038] 
[0.591894964,0.000000096] 
[0.804670818,0.000000808 

2101499132.1 −×  

5 ? ? 
 

 Table 2: Results for Hansen-Sengupta method with error bounds 
Iterations Results 

Mid( kX
), Rad( kX

) ∞

−
)( kXF

 
1 0.358937022, 21.7095978 10−×   

0.600208287, 21.6381989 10−×  

0.808328540, 38.809388 10−×  

2106257369.2 −×  

2 0.336461223, 33.350353 10−×  

0.585636548, 32.417562 10−×  

0.801816087, 38.112458 10−×  

310351703.3 −×  
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3 0.337953381, 53.4978 10−×   

0.585355878, 53.4033 10−×  

0.801709854, 51.5718 10−×  

41018688.2 −×  

4 0.337917117, 53.6264 10−×  

0.585289640, 56.6708 10−×  

0.801634504, 74.15 10−×  

83.1 10−×  

5 0.337917117, 94 10−×  

0.585289640, 127.305 10−×  

0.801634504, 121.9341 10−×  

0 

6 0.337917117,0 
0.585289640,0 
0.801634504,0 

0 

 
Using a result due to Schafer[10] which is a version of Miranda’s theorem [8]  we are able to show that the so called 
Trapezoidal- Newton method with Hansen-Sengupta approach has no rational map with a fixed point solution to the given 
problem. Further insight into this regard can be found in Rohn[11], Kearfort and Xing[7]. Again Trapezoidal Newton method 
is also not a H-continuous map since Baire category , see e.g., Anguelov  et al, [3] failed to hold  as we found in the given 
problem. This means that the graph completion operator is not inclusion isotone for this type of method. 
 
5.0       Conclusion 

The paper reported a defect which is common with multiple applications of a preconditioner in  the interval based 
Hansen-Sengupta method for finding solution to interval nonlinear system of equations. In particular we studied this effect on 
Trapezoidal -interval Newton method following the idea of Shokri [13] and the cited references there in.  The inherent 
problems encountered arose as a result, where there are many paths near some points, the Trapezoidal –Newton method 
based on Hansen-Sengupta approach  may produce  not only overly an overestimated results but also results that are not 
finitely bounded as shown in Table 1.   

On the other hand computed values using original Hansen-Sengupta method (3.7) as discussed in Uwamusi[16] 
produced quite satisfactory results on the same sample test problem1, in the sense that monotonic and inclusion isotonicity 
property of interval arithmetic with order preserving were obtained. From Table 1 , one can see that divergence started at the 
third iteration with Trapezoidal-Newton method whereas results obtained from Uwamusi[16] provided  numerically good 
solution as sequence of iterates tend to infinity. 

Termination criterion for the iteration is 

( )

( )
12

0

( )
10

( )

kF x

F x

−<  or ( ) 1010ks −<  and ( ) ( ) ( )1k k ks x x+= − . 

In the case of Table 1 we stopped the iteration when there was no longer any reason to continue with the iteration after four 
successive iterations as the solution obtained diverged from the true solution. 
Thus the way an iterative method is written or evaluated will greatly harm the quality of interval solutions. This suggests that 
it is strongly recommended in interval based iteration to reduce as much as possible correlations among intervals. 
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