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Abstract 
 
In recent time, the delay equations have been widely used in the modeling of 

dynamic systems, most especially the neutral delay equations. But its asymptotic stability 
analysis proves to be more difficult. In this paper, a retarded delay system is transformed 
to a class of neutral delay system using the differentiability condition of the functional 
on the Banach space. The Leibnez-Newton formula and symmetric properties of some 
chosen matrices are utilized to formulate a Lyapunov functional of the transformed 
system, which satisfies the Lyapunov-Krasvoskii conditions for asymptotic stability. The 
computation of the maximum time-lag (hm) for the system to attain stability is 
approximated by the difference integral equation of the integrodifferential equation. 
Numerical illustration confirms the suitability of the result.   
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1.0 Introduction 
The extensive applications of neutral functional equation in the modeling of dynamic (time dependent) system have 

attracted attention of many researchers in mathematical sciences (see;[1], [2] and [3]). This is because the incorporation of 
the time-lag in both the derivative and the state functions of the system equations (which account for the non-instantaneous 
actions and reactions of the system) make the system model more realistic. 

Researchers have used various analytical concepts in the analysis of the properties of this functional equation 
(neutral equation), most especially the asymptotic stability of the system solution. Karsatos[4] stated that the survival of any 
dynamic system depends mostly on the stability properties of the system solution. Thus, the analytical approach readily 
employed to analyze the asymptotic stability of the neutral system are broadly base on two fronts: the delay independent 
results, which do not take the delay into consideration, but results are generated using matrix norm and measures ([3], [5], [6] 
and [7]), and the delay dependent results which take the delay into account ([3], [8], [9], [10] and [11]). Results of the delay 
dependent approach are mostly formulated to satisfy the Lyapunov-Krasovskii conditions for asymptotic stability. It involves 
the formulation of a positive definite matrix function, whose derivative is negative definite. 

 In this paper, the differentiability condition of the functional of a retarded system is employed to transform the 
system to a class of neutral delay system, and Leibnez-Newton formula is utilized to derive an integrodifferential of the 
transformed system. The maximum time-lag (hm) for the system equation to attain asymptotic stability is computed by using 
difference integral equation of the integrodifferential. Results on the asymptotic stability of retarded systems using quadratic 
matrix equation and linear matrix inequality test  that satisfy the Lyapunov- Krasovskii  conditions for stability [12], are 
extended to the analysis of the asymptotic stability of the transformed system. This is achieved by the use of the derived 
integrodifferential equation, a symmetric positive definite matrix P  and the introduction of symmetric matrices 

nxnRNW ∈, . Numerical computations are employed for illustration.  
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1.1 Notations 

 P is a positive symmetric matrix, I is an n×n identity matrix.  

En is the n-dimensional Euclidean space, with •  as the Euclidean vector norm. [ ]( )n
H EthtB ,,−  is the Banach space of 

continuously differentiable functions on [ ]tht ,−  such that [ ] nEthtf →− ,: , f  is a continuous differential function on 

[ ]tht ,− . )(sϕ  is a continuously function with norm in [ ]( )n
H EthtB ,,−  defined as )(sup)( ss

tsht
ϕϕ

<≤−
= . W  is a 

symmetric matrix with diagonal elements 10 ≤≤ iia , such that each iw  defines the ith row of W , 10 ≤≤ iiw , and 

( ){ } WywxwEyx ii
n ∈−−∈= 1;,ζ  is the convex set segment of W . )( BAL +=  defines the approximating matrix 

of the integrodifferential, tx  is the delay vector function  and )(tx  is an nx1 displacement vector solution about a position of  

stable equilibrium. 
 
1.2 Definitions 

Consider a general delay system,                 

                 ....,2,1,0))(,)(),(,( )( ==− nfortxnhtxtxtf nn                   (1.0) 

For any given initial condition )()( 0 stx ϕ= , for [ ]thts ,−∈ , Han[8] stated the following definitions for stability of the 

system; 

(i) the solution 0)( =tx  of the system is Lyapunov stable if for any 0>ε , there exists ( ) 0,0 >= εδδ t  such that 

if δϕ <)(s  then ( ) ,)(,, 0 εϕ <sttx . 

(ii) the solution 0)( =tx  of the system is asymptotically stable if it is Lyapunov stable, and there exists a 

( )011 tδδ =  satisfying 1)( δϕ <s  such that ( ) 0)(,, 0 →sttx ϕ  as t → ∞. 

 
 
2.0 Main Result 
 The aim of this section is to transformed retarded system (2.0) to a class of neutral system with delay )(h . Results 

on the asymptotic stability conditions of the transformed model and theorem on the computational approach of the delay
)0( >h  for the system solution to attain asymptotic stability are presented. 

 Consider a first order linear retarded system of (1.0) in the form, 

  
).()()(

)()()(

htCxtytx

htBxtAxty

−+=
−+=

•

       (2.0) 

By system (2.0) )(ty  is differentiable, hence )()( htCxtx −−  is also 

 differentiable. Therefore, the following transformation holds for (2.0); 

  )()()()( htBxtAxhtxCtx −+=−−
••

.      (2.1)     

System (2.1) is the desired neutral delay system with delay 0>h .      Utilizing the Leibniz-Newton formula stated as 

  ∫ −

•
=−−

t

ht
dxBhtBxtBx ττ )()()( ,      (2.2) 

The integrodifferential equation of  (2.1) is defined as 

  )()()()()( txBAdxBhtCxtx
dt

d t

ht
+=





 +−− ∫ −

ττ .    (2.3) 

 Han[8] stated that the asymptotic stability  analysis of the difference integral equation 

∫ −
+−−

t

ht
dxBhtCxtx ττ )()()(  of (2.3) implies that of system (2.1). 
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Theorem 1 
 Let [ ] n

t Ethtxf →− ),,(:  be a continuous, differentiable linear neutral functional system, for 

[ ] ),,( n
Ht EthtBx −∈ , and consider the  integrodifferential equation (2.3) written in the form )(),( tLxxtf

dt

d
t − to be 

singular such that the approximating matrix )( BAL +=  is a stable. Then the difference integral equation 

∫ −
+−−

t

ht
dxBhtCxtx ττ )()()(  at 0=t  satisfies 

   ( ) ( ) 0
1 =+−+ − heCBIB λλλ
λ

. 

Proof 
 Assume the system is stable. Then by the hypothesis the following equation holds    

   0)(),( =− tLxxtf
dt

d
t .      (2.4) 

Also since L  is a stable matrix, there exists 0: <≤− λδλ for 0>δ being a real value such that the vector solution of 

(2.4) has the form 

   tetx λ=)( .        (2.5) 

Then, writing (2.4) in terms of (2.5) yield 0)()( =− tLxtxλ ,  so that       

                              0)()( =− txLIλ .       (2.6) 

Since ,0)( ≠tx  then 0=− LIλ and λ is the desired eigenvalue which must be negative for L to be a stable matrix. 

 Also consider the difference-integral of equation (2.3) written as 

∫−
=+−−

t

ht
dxBhtCxtx 0)()()( ττ .     (2.7) 

Resolving (2.7) in terms of (2.5) at 0=t we obtained, 

   ∫−
− =+−

0
0

h

hh deBCeI τλλ , 

and by simple integral computation the above equation yield  

   0,0)( <=−+−
−

− λ
λ

λ
λ

h
h eI

BCeI . 

Hence 

   ( ) ( ) 0
1 =+−+ − heCBIB λλλ
λ

 

is satisfied. 
Theorem II  
 Let the approximating matrix )( BA +  of (2.3) be a stable matrix, then for a defined difference-integral 

∫−
=+−−

t

ht
dxBhtCxtx 0)()()( ττ  there exists a symmetric positive definite matrix nxnRP ∈  which is the unique 

solution of the quadratic matrix equation QBAPPBA T −=+++ )()(  for nxnRQ ∈  . And for any given Lyapunov 

functional httxtV −≤≤ ττ ));(,(  which is continuous and differentiable, the resulted diagonal linear matrix inequality 

of  ))(,( τxtV
•

 satisfies 

   0

000

000

000

000

44

33

22

11

<























∑
∑

∑
∑

, 
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where 

 NBAWBIBIWBAPBPBQ TTT +++++++−−−=∑ )()()()(
11

, 

 )()()(
22

BCWBAPCBPBPCBA TTT +++−−+=∑ , 

 )()()(
33

BAWBCPBPBCBAPC TTTT +++−−+=∑ , 

 NPCBPBC TT ++=∑ 44
,  

where nxnRNW ∈,  are symmetric. 

Then the solution 0)( =tx  of (2.1) is asymptotically stable 

Proof 

Consider the integrodifferential equation (2.3) in the form     

 ( ) ∫ −

•
−+=−−

t

ht
dxBtxBAhtCxtx

dt

d ττ )()()()()( ,    (2.8)   

with the approximating matrix )( BA + , such that there exists a symmetric positive definite matrix P which is the unique 

solution of QBAPPBA T −=+++ )()( .Then, for symmetric matrices nxnRNW ∈, , and extending the results in [11] 

for retarded systems, the Lyapunov functional is defined as  

httxtVxtV
i

i −≤≤=∑
=

τττ ;))(,())(,(
3

1

,  

where  

  ( ) ( ))()()()(1 htCxtxPhtCxtxV T −−−−= , 

 




 +−−





 +−−= ∫∫ −−

t

ht

Tt

ht
dxhtCxtxWdxBhtCxtxV ττττ )()()()()()(2

, 

 ∫= τττ dMxxV T )()(3 . 

And 

( ) ( ) ( ) ( ))()()()()()()()())(,(1 htCxtxPhtCxtx
dt

d
htCxtx

dt

d
PhtCxtxxtV TT −−−−+−−−−=

•
τ  

( ) ( ))()()()()()()()()()( htCxtxPdxBtxBAdxBtxBAPhtCxtx Tt

ht

t

ht

T −−






 −++






 −+−−= ∫∫ −

•

−

•
ττττ

( )
( ) ( ) ( ) ( )

( )

)()()()()()()()(

)()()()()()()()()(

)())(()()()()()()()(

)()())()(())()(()()(

)())(()()()()()()()(

htPCxBhtxhtPCxBtxtPxBhtxtPxBtx

htPBxChtxhtPBxhtxhtPBxtxPBChtxtPBxtx

htPCxBAtxtxBAPChtxtxBAPPBAtx

htCxtxPhtxtxBhtxtxBPhtCxtx

htPCxBAtxtxBAPChtxtxBAPPBAtx

tTTTTTT

TTTTTTT

TTTTTT

TT

TTTTTT

−−−−−−+−
−−−−−−−−−+−

−+−+−−+++=

−−−−−+−−−−−+

−+−+−−+++=
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( )
( )

( )
( ) ).()(

)()()(

)()()(

)()()()(

htxPCBPBChtx

txPBPBCBAPChtx

htxPCBPBPCBAtx

txPBPBBAPPBAtx

TTT

TTTT

TTT

TTT

−+−−
−−+−−

−−−+−

−−+++=

     (2.9) 






 +−−





 +−−+






 +−−





 +−−=

∫∫

∫∫

−−

−−

•

t

ht

Tt

ht

t

ht

Tt

ht

dxhtCxtx
dt

d
WdxBhtCxtx

dxhtCxtxWdxBhtCxtx
dt

d
xtV

ττττ

τττττ

)()()()()()(

)()()()()()())(,(2
 

                 

( )

( )
( ) ( )
( ) ( ))()()()()()(

)()()()()()(

)()()()()(

)()()()()(

txBAWhtxBCtxBI

htxBCtxBIWtxBA

txBAWdxBhtCxtx

dxBhtCxtxWtxBA

T

TT

Tt

ht

t

ht

TT

+−+−++

−+−++=

+




 +−−+






 +−−+=

∫

∫

−

−

ττ

ττ

 

                 
( ) ( )

( ) ( ) )()()()()()()()(

)()()()()()()()(

txBAWBChtxhtxBCWBAtx

txBAWBItxtxBIWBAtx
TTTTT

TTTT

++−−−++−
+++++=

 

                  

( )
( )

( ) ).()()()(

)()()()(

)()()()()()(

txBAWBChtx

htxBCWBAtx

txBAWBIBIWBAtx

TT

TT

TTT

++−−
−++−

+++++=
    (2.10)  

).()()()(

)()())(,(3

htxNhtxtNxtx

dNxxxtV

TT

t

ht

T

−−−=

= ∫ −

•
ττττ      (2.11) 

Combining equations (2.9), (2.10) and (2.11) to obtain, ))(,())(,())(,())(,( 321 ττττ xtVxtVxtVxtV
••••

++= .  

That is  

( )
( )

( )
( ) ).()(

)()()()()(

)()()()()(

)()()()()()())(,(

htxNPCBPBChtx

txBAWBCPBCBAPCPBhtx

htxBCWBAPCBPBPCBAtx

txNBAWBIBIWBAPBPBQtxxtV

TTT

TTTTT

TTTTT

TTTT

−++−−
+++++−−

−+++−−+−
+++++++−−−=

•
τ

  

( )




















−

−

























−−=

∑
∑

∑

∑

•

)(

)(

)(

)(

000

000

000

000

)()()()())(,(

44

33

22

11

htx

tx

htx

tx

htxhtxtxtxxtV TTTTτ
.     (2.12) 

The negative definiteness of the linear matrix inequality is satisfied if one or three of the diagonal element of the matrix in 
equation (2.12) has/have negative value/values. By the theorem, this implies asymptotic stability of system (2.1).  
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3.0 Illustration 

 Consider the elastic wire-mass system without friction problem consisting of mass m  that translates along a 
horizontal surface. The location of the mass is identified by the coordinates of its centre of mass H , which is attached to an 
elastic wire stretched with ends A  and H . The governing modeling equation is  

   kx
dt

xd
m −=

2

,        (3.0) 

 where x  is the distance that the mass m  translate, k  is the tension constant which act in the opposite direction to the force. 
The mass m does not react instantaneously to the drag force (tension), until the later is equal to the weight of the mass. 

Therefore, there exists a time lagh  for which the mass react to the tensionkx . 

 Modifying system (3.0) by incorporating the time lagh  yields a neutral delay system as follows 

   )()()( tkxhtxmtxm −=−+
••••

.        (3.1) 

 By defining )()( 21 txtx =
•

 and )()( 21 htxhtx −=−
•

,  a first order linear delay system of  (3.1) is written as 

  

















−

−

















−
+
































−
=
















−

−

















−
















•

•

•

•

)(

)(

10

00

)(

)(

0

10

)(

)(

10

01

)(

)(

2

1

2

1

2

1

2

1

htx

htx

tx

tx

m

k
htx

htx

tx

tx
  

or    )()()()( htBxtAxhtxCtx −+=−−
••

.     (3.2) 

Resolving for the symmetric positive definite matrix P using the quadratic matrix equation 

QBAPPBA T −=+++ )()( , then              

,

1

0

1

220

)(

022

22

12

11

2212

21221112

2111

















−

−
=
































+
p

p

p

ll

llll

ll
     (3.3)      

 

where 22211211 ,, landlll  are the elements of the stable matrix  BAL +=  and matrix IQ = . Substituting for 

22211211 ,, landlll from the stable matrix  
















−−
=

1

10

m

kL , into system (3.3) the following equations are obtained, 

  

.122

0

12

2212

221211

12

−=−

=−−

−=−

pp

p
m

k
pp

p
m

k

       (3.4) 

Solving equation (3.4) for 221211, pandpp , symmetry matrix P is obtained as 

  



















−

−−

=

k

mk

k

m
k

m

km

mkmk

P

22

22

22

. 

This is positive definite matrix if and only if 
2

222

422 k

m

km

mkmk

k

mk >






 −−−
, and this occur at the point where mk > . 
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3.1 Computation Of The Maximum Delay  

 Considering the approximating matrix 
















−−
=

1

10

m

kL , the eigen-value 0<λ  is computed as 

m

km 4
1

−±−=λ , which is a complex root with negative real part for all mk > . Therefore L  is a stable matrix. 

 The value of mh  is thus computed using the hypothesis of theorem I, that is for 
m

km 4
1

−±−=λ   then,  

   ( ) ( ) 0
1

max =+−+ − heCBIB λλλ
λ

. 

3.2 ASSYMPTOTIC STABILTY ANALYSIS  
 By theorem II,   the negative definiteness of the diagonal linear matrix inequality   

  0

000

000

000

000

44

33

22

11

<























∑
∑

∑
∑

, 

implies that the system solution is asymptotically stable. 
Using matrices BICBA +,,, as defined by system (3.2), 

















=+
















=
















−
=

















−
=

00

01

,

10

01

,

10

00

,
0

10
BICB

m

kA  , the symmetric positive definite matrix P  

computed above, matrix IQ = , and for appropriate choice of symmetric matrices nxnRNW ∈, , the following are 

obtained; 

22121211

1212111112

11

1
2

2
21

nmknww
k

m

nww
k

m
n

m

k
w

−−+−+−+−

+−++−−
=∑ , 

)(2
2

1

2

2
22

1

22121211

2

22

2

12

22

wwww
k

mkmk

m

k
w

k

mkmk

m

k
w

−++−+−

−+−+
=∑ , 

 

)(2
2

2
2

2

2

22

2

1

221222

22

1211

222

12

33

ww
k

mk

m

k
w

km

mkm

ww
km

kmmkmk

m

k
w

−+−−−+−

+−++−+
=∑ , and 

2212

1211

44

)
2

(2

2

n
k

mk
n

n
k

m
n

+−−

+
=∑ . 

Then, the value of one or three of ∑11
,∑22

,∑33
and ∑44

 must be negative (for appropriate choice of symmetric 

matrices nxnRNW ∈,  and 

 mk > ) for the linear matrix inequality to be negative definite and the system solution is asymptotically stable. 
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4.0 Conclusion 
 In this paper, the difference integral equation of the integrodifferential  of the transformed neutral system was used 
to formulate a computational approach for the maximum time-lag (hm),  at which the system equation  attain asymptotic 
stability. The integrodifferential of the system, the symmetric positive definite matrix P which is a unique solution of 
quadratic matrix equation, and the symmetric matrices W, N were utilized to generate a Lyapunov functional that satisfy the 
Lyapunov- Krasovskii conditions for asymptotic stability.  Numerical illustration employed confirms the results of the 
analysis. 
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