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Abstract 
 
In reliability modelling with redundancies, it is assumed that the system would have 

sets of failed, standby, and working subsystems at any time. This study deals with the 
case of stochastic switched linear system comprising series-parallel interconnected 
subsystems for which operational safety conditions are specified. The subsystems are 
assumed to admit the same control inputs and undergo the same state transitions. Thus, 
constructing a subsystem Markov model and matching its parameters with the specified 
safety factors provides the basis for the entire system analysis. For the system 
simulation, temporal databases and predictive control algorithm are designed. The 
simulation results are analyzed to assess the reliability of the system behaviour. Graphs 
of the system behaviour indicate cases of highly oscillatory and fairly stable trajectories 
from which optimal-time controls are deduced. The study demonstrates use of temporal 
databases in practical analysis of such stochastic system, highlighting the dynamics 
beyond results of theoretical analysis. The study has applications, which include optimal 
design of fault-tolerant real-time switching systems control and modelling embedded 
micro-schedulers for complex systems maintenance. 
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1.0 Introduction 
Reliable switching control problems occur in the design of many complex physical artefacts. The switching devices may be 
electronic, hydraulic, mechanical, etc. Reliability modelling of switching control of some complex systems assumes that at 
any time, there are sets of failed, standby, and working subsystems. As the system dynamics vary with switching instants, 
control rules dealing with subsystems states and timed switching sequences are designed to regulate the system behaviour 
[1–4]. This study deals with reliability modelling and simulation of an intuitively specified stochastic switched linear system 
control using temporal databases. The major objective is to determine if the specifications would result to reliable, optimal-
time control, and stable system trajectories.   
 
1.1 Previous study 
 In a previous study reported in [5], a strategy board game called Jonda was redefined and used as experimental 
object in switched linear system identification. The aim was to explore the feasibility of non-classical methods (namely, 
game-theoretic strategies and neural computing) in system identification from first principles. The study resulted to 
construction of mathematical models of the system and its controller, estimation of parameters and identification of 
stabilizing switching control rules. A simulation test that considered few fixed temporal parameters of the identified system 
was carried out to assess its behaviour, which was found to be reasonable.   
 With the results of the previous study, the present study adopts a more pragmatic approach to the reliability 
modelling based on detailed system specifications. Significant in the approach are the construction of subsystem Markov 
model, temporal databases, enhanced switching control rules, and extensive simulation tests aimed at determining the 
regions of reliable control. 
 
1.2 Basic state space model of a discrete-time switched linear system 
As our study is concerned with a discrete-time system, we define the basic model equations as follows: 

x(t+1) = A(t) x(t)  + B(t)u(t)       (1.1) 
   y(t)      =  C(t)x(t) + D(t)u(t)      (1.2) 
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where x Є Rn is the state variable vector,  u is the forcing input, y Є Rn  is the system output vector or configuration, A, B, 
C, and D are the switching state, input coefficient, output, and gain/feed-through matrices, respectively. 
For a discrete-time transitive system, the switching behaviour can be described as a 5-tuple:    
   S = (x, q, u, Φ, t)         (1.3) 
where x is a set of state variables, q is the set of switching modes, u is set of control inputs, t is the switching time, and Φ is 
the switching control function or rule. Thus, for the switching rule, we may write  

q(t+1) = Φ(x(t), q(t), u(t))        (1.4) 
Usually, the switching control function specification depends on the control performance criteria such as stability, 
reliability, minimum trajectory tracking error, etc. Thus, equation (1.4) can be used to generate and test switching sequences 
that meet desired performance criteria. We note that for switching control functions that study system stability or reliability, 
the switched system can be viewed as a special case of a time-varying linear system [6 – 8].    
 
2.0 System specifications and statement of the problem 
2.1 System description 
 Consider a discrete-time switched linear system with subsystems (or nodes) arranged as shown in Figure 2.1. This 
figure corresponds to the board structure of a tic-tac-toe game called Jonda, which we have developed for advanced learning 
tool in control system theory and computer science [5,9]. In this abstracted case, Figure 2.1 represents control panel display 
of a switched linear system. 

 
 
 
 
 
 
 
 
 

Figure 2.1: Sample switched linear 
system layout 

 
In the figure, each horizontal, vertical, and diagonal row is a set of operationally related nodes. The square nodes have 
greater operational capacity than the circular nodes. In terms of operational safety, the critical sets are: failed-nodes F(f1, 
f2,…,fk), standby nodes S(s1, s2,…,sm), and working (active) nodes W(w1, w2, …, wn). The nodes are transitive elements 
with the relations T(S, W), T(W, F), etc, meaning transitions from standby to working, working to fail, respectively. 
Working node failure occurs randomly, while other node transitions may be due to human operator or controller actions. 
The nodes are assumed to admit the same set of control inputs and all node state transitions are to be automatically 
recognized by the controller.  
 
2.2 System specifications  
For the reliability modelling with redundancies, appropriate failed-standby-working ratio policy (e.g. 4-4-9) is to be 
adopted. The node temporal parameters are defined as downtime td, standby time ts, working time tw, and the maximum and 
minimum values as tdmax, tsmin, and twmax. The system safety conditions that depend on the sets of node states and temporal 
parameters are specified as presented in Table 2.1.  

Table 2.1:  System safety condition and temporal specifications 
S/N System safety condition Node states and explanations Temporal relations 
1 Fatal system failure Complete row failure With all  td < tdmax  
2 Many row-failure chance For 3-node row: W = 1, F = 2; 

For 5-node rows: W = 1, F = 4.    
tw ≤ twmax, and there are some 
td <  tdmax. 

3 One row-failure chance  One row with W defined as for 
many row-failure above  

At least one F node with  
td ≥ tdmax, and/or one W node 
with tw < twmax. 

4 Working square and circle 
nodes ratio  

The ratio Nsq/Ncir should be in the 
range of 0.50 …1.00 

The case of Nsq/Ncir < 0.50 is 
tolerable if some Nsq (td) ≥ 
tdmax or Nsq (ts) ≥ tsmin, 
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5 Minimal safe 
configuration 

For 3-node row:  W ≥ 1, and S ≥ 
1. For 5-node rows:  W ≥ 2 and S 
≥ 1.  

For some W and S nodes  
tw < twmax, and ts ≥ trmin 
 

6 Optimal safe 
configuration 

For 3-node row:  W ≥ 2. 
For 5-node rows: W ≥ 3. 

tw < twmax for most W nodes; 
td ≥  tdmax  for most F nodes;  
ts ≥ tsmin for most S  nodes. 

 
In particular, fatal failure is considered as an undesirable incident whereby the controller shuts down system without options 
for operator’s intervention. Single or multiple row failure chance is a condition whereby the system may continue to operate 
for some time interval within which stabilization might be possible. We note that some of the temporal relations imply 
specifications for delay in state or control in the system. The switching controller is to switch nodes to maintain safe and 
reliable operation by checking immediate and near-future system failure chances. The entire system is required to operate 
safely for a reasonable time horizon before failure.  
 
2.3 Statement of the problem 
With the system description and specifications, the problem to be addressed is summarized as follows:  

(1) Develop a stochastic simulation model of the abstracted switching control system for testing the workability 
and reliability of its specifications; 

(2) Construct appropriate temporal databases and control algorithm to automate the model simulation; 
(3) Evaluate the simulation results to ascertain the operational reliability in terms of optimal-time control and 

stable system trajectories. 
 
3.0 System modelling 
3.1 Subsystem Markov model state transition diagram and temporal relations 
Each subsystem (or node) in our system is a transitive element that may be in failed (F), standby (S), or working (W) state. 
The state transition diagram is as presented in Figure 3.1.  

 

Figure 3.1: Node state transition diagram 
 
The node links 4 and 8 need further explanation. In practice, link 4 may be due to human operator corrective action for 
minor faults of short duration. For instance, the operator may temporarily stop a working node, quickly make some 
adjustments, and switch it back to working mode within the specified limit of delayed control. Further, suppose a failed 
node is completely replaced by a new one, it may also be switched to working mode immediately, leaving the controller 
with system stabilization. Link 8 is for conditions when standby node fails while being switching to working mode.  The 
transition links and temporal relations are as explained briefly in Table 3.1, while Table 3.2 shows the possible node 
transitions and controller actions. It is assumed that within the maximum downtime tdmax, a failed node must have been 
restored to normalcy and can be switched to standby or working mode. 

 Table 3.1: Node state transitions and temporal relations 
Node 
Link 

 
Explanations 

 
Temporal relations 

1 Continuous working mode tw < twmax 
2 Working node failure or operator action Random incidental fault  
3 Downtime duration  td  ≤ tdmax 

4 Repaired F node switched to W node td ≥ tdmax 

5 Working node switched to rest tw ≥ twmax 

6 Node standby or rest duration ts ≥ tsmin 
7 Switching from S-node to W node Ts ≥ tsmin 
8 Faulty S node switched to F Occasional S node failure  
9 Repaired F node switched to S node td ≥ tdmax 

F 

S 
W 



72 

 

  
 
 

 Table 3.2:  Effects of node state transitions and controller actions 
Node Transitions Possible effects Possible controller actions 
T1(W, F) Instability due to node breakdown Switch nodes using T2, or T5 
T2(F, W) Repairs increases W nodes Perform T6 
T3(F, S) Repairs increase S nodes Perform T5 
T4(S, F) Failed S nodes increases F nodes  Perform T3 and T5 
T5(S, W) Switched S nodes increases W nodes Perform T3 or T6 
T6(W, S) Switched W nodes increases S nodes Perform T2 or T5 

 
3.2 The Markov model parameters  
 The applications of Markov models include studies of system performance improvement, and stochastic transition 
system modelling such as complex queuing systems [10,11]. Some of the parameters associated with a Markov model are 
state transition probabilities ρij, equilibrium probabilities P1, P2, …, Pn, mean time duration of each state, mean recurrent 
time of a recurrent state, etc. While the other parameters are calculated, the state transitions probabilities are determined 
from analysis of the system’s past operational data or the model builder may assign the empirical values based on 
preferences, intuition, game-theoretic payoffs, or technical feasibilities [7,12–15].  
For the case under consideration, empirical values are assigned to the state transition probabilities and are related to the 
temporal safety factors of the system. Table 3.3 shows a sample of the possible state transition probability matrix assigned 
after some trial sampling, and what may be considered as worst–case values. 
 
 

Table 3.3: Sample node state transition probability matrix 

Node state F S W 

F 0.25 0.60 0.15 

S 0.05 0.25 0.70 

W 0.20 0.20 0.60 

Let the equilibrium probabilities for F, S, and W node states be P1, P2, and P3, respectively. Then, these probabilities are 
determined by solving the simultaneous equations  
      
   0.25        0.05  0.20     P1            P1   
     0.60 0.25 0.20         P2 =       P2     (3.1) 
   0.15 0.70 0.60     P3           P3 
    
        and    P1 + P2 + P3 = 1        (3.2) 
 
The solution of the equations gives P1 = 0.166, P2  = 0.281, and P3 = 0.553. This means that at equilibrium, 16.6% of a 
node’s productive time is spent in failure mode, 28.1% in standby mode, and 55.3% in active work. Note that these are due 
to the assigned worst–case values in Table 3.3.  
Since the equilibrium probabilities are constants, they can be related with the temporal parameter ratios: td/tdmax ts/tsmin, and 
tw/twmax. Thus, for simulation of the system steady state behaviour, we may write the rules covering switching mode 
transitions T, as: 

If (td/tdmax ≥  P1)  then T(xd, xs)      (3.3a) 
If (ts/tsmin ≥  P2)  then T(xs, xw)      (3.3b) 
If (tw/twmax ≥ P3) then T(xw, xs)      (3.3c) 

In a situation where a standby subsystem may be switched to maintenance state (M) if, considering the total working time 
Σtw, it is due for maintenance, we may write    

If (Σtw/tmaintdue ≥ 1.0) then T(xs, xm)      (3.3d) 
Equations (3.3a) – (3.3d) correspond to some part of the switching rule defined by equation (1.4). The above basic rules 
have to be combined with other records of the temporal databases and system safety factors to design the switching control 
algorithm [16– 19].    
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 The meant time duration of the node states can be computed to determine the temporal parameters tdmax, tsmin, and 
twmax as follows: 

Ndur = t/(1.0 – ρjj)        (3.4) 
where t is the time it takes to enter a state, and ρjj is the diagonal elements of the state transition probability matrix defined in 
Table 3.3. Hence tdmax = tsmin = 1.333 unit time, twmax = 2.5 unit time, which may be seconds, minutes, hours, etc.  
 Further, the mean recurrent times trj of the F, S, and W node states are calculated using the following formula (where 
trj is the mean time between successive visits to a recurrent state): 

trj= 1.0/Pj         (3.5) 
where Pj is the equilibrium probability of the jth state. Hence, for the F, S, and W node states we have F(trj)  = 1.0/0.166 = 
6.0241; S(trj)  = 1.0/0.281 = 3.5587;  W(trj)  = 1.0/0.553 = 1.8083. 
 
3.3 System temporal databases and predictive switching control rules 
In section 3.2, our calculations have been on Markov model of a single subsystem. This section deals with aggregation of 
subsystem parameters to construct the entire system temporal databases and specify its other features. 
Three complementary temporal databases are required for the system simulation. These are described as follows:  

(1) System static database. This contains basic ground facts about the system; the file structure is defined as 
 SystemStaticData(Fmax, Smax, Wmax, Tdmax, Tsmin; Twmax, Tmaintdue) 

Fmax, Smax, and Wmax are maximum allowable F, S, and W nodes, respectively.. 
(2) Node transition database: This keeps track of node state transition times; the file structure is defined as: 

NodeTransitTime(NodeId, NodeCond, PrevState, CurrState, PrevTime, CurrTime) 
(3) System dynamic database: This contains instances of time-stamped records of the system dynamic information; 

the file structure is defined as 
 SystemDynamicData((NodeId, CurrState, NodeCond, Td, Tr, Tw, Twtotal, MTBF)     

NodeCond (node condition) may be failed, standby, working or maintenance due. MTBF is working node mean time 
before failure.  

 
3.3.1 System temporal parameters and safety factors specifications 
Suppose as part of the model builder’s decisions, the following data are specified: 

(a) Content of system static database: Fmax = 4, Smax = 4, and Wmax = 9;  
(b) Time scale: Node state unit times may be in seconds, minutes, hours, etc. For instance, we may let Tdmax = 60, 

Tsmin = 4, Twmax = 30, and Tmaintdue  = 720. Usually, such temporal parameters are not fixed arbitrarily; rather 
they are determined by some analysis as shown in section 3.3.2.  

(c) The system safety factors are as specified in Table 3.4, where Nsq, denoted square nodes, and Ncir, circular nodes. 
 

Table 3.4:  System conditions and safety factors 

S/N System safety conditions Safety factors 

1 Fatal system failure 0.00 

2 Many row-failure chance 0.00 

3 One row-failure chance 0.20 

4 Nsq/Ncir ratio < min. value  0.40 

5 Nsq/Ncir ratio ≥ min. value  0.60 

6 Minimal safe configuration 0.80 

7 Optimal safe configuration 1.00 
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3.3.2 Relating the equilibrium probabilities and safety factors 
 When the values of Tdmax, Tsmin, and Twmax have been predefined, the range of temporal variables Td, Ts, and 
Tw can be determined as follows (based on the equilibrium probabilities and maximum time parameters specified in section 
3.3.1):  

(1) td/tdmax  ≥ P1 =>  Td/60  ≥ 0.166 or Td ≥ 9.96; 
(2) ts/tsmin  ≥ P2 => Ts/4 ≥ 0.281 or Ts ≥ 1.124; 
(3) tw/twmax ≥ P3 => Tw/30 ≥ 0.553 or Tw ≥ 16.59; 

Further, we assume that working node random failure occurs at the mean recurrent time of failed node (F) state. That is,  
(4) Working node mean time before failure (MTBF) ≥ 1/ P1 or 1/0.166 = 6.024. 

Reducing MTBF, Td, Ts, and Tw to unit time scale, we have 0.363, 0.60, 0.068, and 1.00, respectively. Thus, based on P1, 
P2, and P3, the minimum values of MTBF, Td, Ts, and Tw that would allow node switching have been determined. Then, the 
simulation may be based on the time constraints 0.60 ≤ td ≤ tdmax, ts  ≥ 0.068, and 1.00 ≤ tw ≤ twmax. Note that ts ≥ tsmin is 
preferred.  
 The above analysis leads to enhancing the switching rules defined by equations (3.3a) – (3.3d) by incorporating the 
safety factors specified in Table 3.4. For instance, we can write 
 
  If (Ts ≥ 0.068 & Tw ≥ 1.00 & Safety_factor(xs, xw) ≥ 0.2) then T(xs, xw)  (3.6) 
 
Predictive node switching control algorithm comprising rules in the form of equation (3.6) is designed. The algorithm is to 
use the databases to determine switchable nodes that satisfy temporal constraints and safety factors defined in Table 3.4. 
Determining the safety factors of switchable nodes is combinatorial aspect of the reliability modelling problem. As indicated 
by equation (3.6), it involves iterative analysis of switching standby and working nodes, considering system operational 
safety conditions. Reported in the next section are simulation tests of the entire system based on the specifications and 
switching control rules developed in this section.  
 
4.0 Simulation results 
 Approach to model testing depends on the nature and application of the system [20–22]. For our experimental 
model, possible simulation tests include feasibility of the policy on tolerable number of failed, standby, and working nodes, 
optimal-time control, stability, and reliability. Considering system reliability in the context of availability and resilience to 
failure, the parameters tdmax, tsmin, and twmax are applied as specified in the analysis of section 3.3.2, the unit of time being in 
seconds. Node failure is induced by randomization and the failure time interval is varied from 0.01 to 1.00 second. The  
number of switching controls and time intervals of entire system failure are recorded. It is observed that the number of 
system switching controls tends to infinity when node failure time interval is greater than 0.61 second, which is comparable 
to the unit downtime (Td = 0.60 unit time) computed in section 3.3.2. 
 Twenty simulation runs are performed for each value of node meantime before failure. This results to a large 
numerical data output. Based on the computed system switching control speed, the output is sorted into eight (8) data classes 
and the behavioural graphs plotted. Sample graphs indicating oscillatory and fairly stable system trajectories are presented 
in figures 4.1a, 4.1b, 4.2a and 4.2b. It can be deduced from the graphs that node failure time interval from 0.40 to 0.61 
second gives fairly stable system switching speed trajectory for the system specifications.   
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5.0 Conclusion 
 In this study we have practically dealt with reliability modelling and simulation of switched linear system control 
using temporal databases. The experimental study is based on the abstraction of a tic-tac-toe board game called Jonda as a 
stochastic switching control problem, where the nodes are categorized into sets of failed, standby, and working subsystems. 
The controller is to predict switching sequences that would maintain specified operational safety conditions. To provide the 
basis for the entire system analysis, a subsystem Markov model is constructed and the equilibrium state transition 
probabilities matched with the temporal safety parameters. Then, temporal databases and switching control algorithm are 
designed for the system simulation. The simulation results indicate cases of highly oscillatory and fairly stable system 
trajectories from which optimal-time controls are deduced.  
Finally, our methodology can be applied in optimal design of fault-tolerant real-time switching systems control and 
embedded micro-schedulers for complex systems maintenance. Moreover, the model developed can be adapted to study the 
dynamics of some switched linear systems with delays in state and control, most of which are treated theoretically in the 
literature.   
 
References 
[1] Henriques, J., Cardoso A. and Dourado A. (1999): Supervision and cmeans clustering of PID controllers for a solar 
power plant, International Journal of Approximate Reasoning, 22, pp. 73-91.  
[2] Rato, L., Borelli D., Mosca E., Lemos J. and Balsa P. (1997): Musmar based switching control of a solar collector 
field, ECC97-European Control Conference. 
[3] Tripakis S. and Yovine S. (1996): Analysis of timed systems based on time abstracting bisimulations. In Proc. 
CAV'96, Vol. 1102 of Lect. Notes in Comp. Sci. Springer-Verlag.  
[4] Zhivoglyadov P. V., Middleton R. H. and Fu M. (2002): Localization based switching adaptive control for time-
varying discrete-time systems," IEEE Trans. Automatic Control 45(4),  pp. 752-755. 
[5] Njoku C. N. (2011): A study on switched linear system identification using game-theoretic strategies and neural 
computing; To appear in the Journal of the Nigerian Association of Mathematical Physics. 
[6] De Alfaro L. (1999): Computing minimum and maximum reachability times in probabilistic systems. In Proc. 
CONCUR '99, Vol, 1664 of Lect. Notes in Comp. Sci. Springer Verlag.  
[7] Hansson H. and Johnson B. (1994): A logic for reasoning about time and reliability. Formal Aspects of Computing, 
6(4): pp. 512-535. 

 
Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 69 – 76 

0

2000

4000

6000

8000

10000

12000

14000

0.00 0.20 0.40 0.60 0.80

N
o

. o
f s

ys
te

m
 s

w
itc

h
in

g 
co

n
tr

o
ls

Subsystem failure time interval (in seconds)

Figure 4.2a: System switching controls versus 
 subsystem failure time 

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

0.00 0.20 0.40 0.60 0.80

S
ys

te
m

 s
w

itc
h

in
g 

co
n

tr
o

l s
p

e
e

d

Subsystem failure time interval (in seconds)

Figure 4.2b: System control speed versus  
subsystem failure time  



76 

 

Reliability modelling and simulation of switched linear system...     C. N. Njoku           J of NAMP 
 
[8] Niamsup P. and Phat V. N. (2000): Asymptotic stability of nonlinear system described by difference equations with 
multiple delays; In Electronic Journal of Differential Equations, Vol. 2000, No. 11, pp 1-17.  
[9] Njoku C. N. (2004): “Towards the theory and applications of Jonda game”; In The Journal of Computer Science and 
Its Applications; An International Journal of Nigeria Computer Society. Vol 10,  No. 1; pp 103 – 116. 
[10] Shahabuddin P. (1994): Importance sampling for the simulation of highly reliable Markovian systems; Management 
Science, 40(3); pp. 333–352. 
[11] Stewart. W (1994): Introduction to the Numerical Solution of Markov Chains. Princeton  
University Press.   
[12] Basar T. and Bernhard P.(1995): H∞ optimal control and related minimax design problems: A dynamic game 
approach, 2nd Ed., Birkhauser, Boston, 1995. 
[13] Chen H., Scherer C., and Allgöwer F. (1997): A game-theoretic approach to nonlinear robust receding horizon 
control of constrained systems; Proceedings of the American Control Conference, Albuquerque New Mexico. 
[14] Lygeros J., Godbole D. N, and Sastry S. (1996): A game-theoretic approach to hybrid system design. In R. Alur and 
T. Henzinger, editors, Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pp. 1–12. Springer-Verlag.  
[15] Tomlin C. J., Lygeros J. L. and Sastry, S. S. (2000): A game-theoretic approach to controller design for hybrid 
systems”, IEEE Proc., Vol. 88, pp. 949-970.  
[16] Coito F., Lemos J., Silva R. and Mosca E (1997): Adaptive control of a solar energy plant: Exploiting accessible 
disturbances, IIJAC and Signal Processing, 11, 4, 327-342. 
[17]  Lin, C. and Sun H. (2000): Intelligent control theory in the guidance and control system design: An overview, Proc. 
National Science Council, 24, 1, pp. 15-30. 
[18] Hocherman-Frommer J., Kulkarni S. R., and Ramadge P. (1995): Supervised switched control based on output 
prediction errors; roc. 34th IEEE Conf. Decision and Control. 
[19] Kushner H. and Yin G. (1997): Stochastic Approximation Algorithms and Applications. Springer-Verlag, New 
York. 
[20] Alur R., Courcoubetis C., and Dill D (1993): Model-checking in dense real-time. Information and Computation, 104 
(1).  
[21] Baier C. and Kwiatkowska. M. (1998): Model checking for a probabilistic branching time logic with fairness. 
Distributed Computing 11.  
[22] Kwiatkowska M., Norman G., Segala R., and Sproston J. (2000): Automatic verification of real-time systems with 
discrete probability distributions. Technical Report CSR-00-2, University of Birmingham.   
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011), 69 – 76    
 


