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Abstract 
 
This study deals with application of game-theoretic strategies and neural 

computing to switched linear system identification, wherein some of the subsystems may 
be in failed, standby, or working states. The controller is to detect failed subsystems, and 
switch standby and working subsystems to maintain stable system configuration. Its 
performance is based on a number of successful stabilizing controls before entire system 
failure. A strategy board game is redefined as switched linear system and used in the 
experimental study. Mathematical model of the system is derived from its physical 
description, and the controller is modelled as adaptive neural network. The analysis 
results to estimation of system parameters and identification of stabilizing switching 
control rules. The system trajectory is ascertained by simulation tests, wherein 
subsystem failure time intervals are varied. The study demonstrates feasibility of the 
non-classical methods in system identification from first principles. Besides prototype 
system identification, our methodology has applications in combinatorial switching 
control modelling and experimental validation of mathematical models of switched 
linear systems. 

 
 
1.0 Introduction 
The basic problem of linear system identification is explained for continuous- and discrete- time types as follows. A linear 
continuous-time system is described by the basic equations 

x΄(t) = A(t)x(t) + B(t)u(t)         (1.1) 
y(t) =  C(t)x(t) + D(t)u(t)        (1.2) 

where x is the state variable vector, u is the energizing input, y is output vector or system response, while A, B, C, and D are 
the associated coefficient matrices. In real-life, x may be physical quantities found in chemical, electrical, mechanical, 
thermal systems, etc.   
Similarly a discrete-time linear system is described by the basic equations 

x(k+1) =  A(k)x(k) + B(k)u(k)       (1.3) 
  y(k) =  C(k)x(k) + D(k)u(k)       (1.4) 
where k denotes the time instants or sequences of events in the system. 
 For both types of system, identification is the process of determining coefficient matrices A, B, C, and D from the 
input/output data. When these are determined, mathematical methods can be applied to test for controllability, observability, 
and stability. Classical methods for determining the coefficient matrices include least squares, state space modelling, 
calculation of Markov parameters, etc [1–3]. Recently, due to the need to deal with uncertainties in identification problems, 
intelligent methods such as game-theoretic strategies, neural networks, fuzzy logic, and expert system technology are being 
integrated with classical methods. Particularly, intelligent methods are applied to nonlinear, reactive, and ill-conditioned 
systems [4–7]. For instance, game-theoretic strategies are used to investigate conditions for relaxing or tightening controls, 
while neural network is used to model controller structure to deal with nonlinear and adaptive aspects.  
In this study, game-theoretic strategies and neural computing are applied to switched linear system identification. A board 
game called Jonda is redefined as switching system and used in the experimental study. Starting from the physical 
description, the system is analyzed using game strategies, linear switching control concepts, and neural computing to 
develop the analytical simulation model. To ascertain the validity of the estimated parameters and controller performance, 
the simulator output is analyzed, and system trajectory determined. 

1Corresponding authors:-- , E-mail:  cnnodimnjoku@yahoo.com, Tel. +2348059910428  
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2.0 Game strategies and neural computing in system identification 

  2.1 Game strategies in switched linear system identification 
 Game-theoretic strategies are used as optimization methods in control engineering, operations research, and other 
computer-aided design problems [8–11]. Like control problems, strategy games may be continuous-time or discrete-time 
systems. Continuous-time games are differential games such as pursuit-evasion and trajectory tracking games, while discrete 
games (e.g. board games) are formulated as difference equations. Qualitatively, a discrete strategy game can be defined as a 
7-tuple: 
  G = (N, S, δ, Q, X, Y, Ω)        (2.1) 
where  

(1) N is the number of players;  
(2) S is a set of strategies available to the players:   
(3) δ is the set of rules that orders the game;  
(4) Q is the set of stages or internal states;   
(5) X is the finite set of admissible inputs. 
(6) Y is the finite set of output, or system configuration; 
(7) Ω is the payoff or performance objective function.    

If a control system is set up as two-player game scenario, the game object is the system to be controlled, the controller is 
player-1, while input sources such as the operator inputs, internal and external disturbances can be lumped together as player-
2. Multiplayer games are used to study distributed control systems [12,13]. For most control system identification problems, 
N, X, and Y are known. The other aspects S, δ, Q, and Ω may be partially known or entirely unknown and these form the 
identification problem space. 
In a game-theoretic approach, the game-like control system is modelled as a mathematical object, while the control process is 
modelled as an algebraic combinatorial game. In control-theoretic form, a discrete-time game can be expressed as:  

x(t+1) = f(x(t), u(t), c(t))        (2.2) 
y(t) = g(x(t), u(t), c(t))        (2.3) 

where x(t) ∈ Rm is the state space vector, u(t) ∈ Rn is the external input, c(t) is the controller input, y(t) is the output vector, f, 
and g are input and output functions, respectively.  
 The switching rule for the system can be defined by the equation [14–16]:  
   q(t+1) = Φ(q(t), x(t), c(t)).        (2.4) 
where q is the switching mode, t ∈ [t0, tmax], and Φ is a mapping function that orders the switching sequences. If switching 
takes place at time instants t0, t1, …, tj,… so that a subsystem is switched at time tj, then the sequence is expressed as: 
s = (q0, t0), (q1, t1), …., (qj, tj), …   for j = 0, 1,…,     (2.5) 
 We note that for some adaptive or predictive switching control problems, the internal processes through which the controller 
decides on switching sequences can be considered as tic-tac-toe game strategy. Hence, game strategies can be applied in 
modelling the switching controller. 
 
2.2 Neural network in switching controller model identification  
We consider controller model identification as the problem of determining the controller mathematical structure and 
algorithms. For some problems, neural networks (NNs) can be constructed and adapted to approximate required system 
controller characteristics due to the features that include: (a) Suitability to many interconnected subsystems; (b) Well-defined 
mathematical structure, implicit parallelism, statistical learning, and ability to classify pattern;  (c) Integration of suitable 
(non)linear output filtering functions to produce decision parameters; (d) The basic topologies and algorithms can be 
enhanced to suit adaptive, predictive, and optimal control strategies. Figure 2.1a shows a multilayer neural network with 
single output, while 

Figure 2.1b shows a cascaded set of neural networks for multivariable control.  

 

 

 

 

 

 

                  (a)            (b) 

Figure 2.1: Basic structure of neural network based control system 
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NNs are suited to system identification, as they are not explicitly programmed, but have to be trained or adapted to particular 
problems. For control applications, the controller behaviour is established during the training process. The training is a 
statistical learning process, relating inputs, computed node link weights, output nodes’ values, and desired (predefined) 
output values. Let the set of inputs be X = (x1, x2, …,xm) and Y = (y1, y2, …, yn) be outputs computed from various 
combinations of the inputs. The sets X and Y are related by matrix operator or node link weights wij, and node activation 
function that may be linear, sigmoid, hyperbolic tangent, gaussian, ramp, sign function, etc. Not only on nature of the 
problem, the actual mathematical relationship between X and Y depends also on the chosen network topology (e.g. multilayer 
perceptron, adaptive bidirectional associative memory, self-organizing maps, etc), and training algorithm. The mathematical 
formulations and training algorithms abound in the literature. A fully trained or adapted NN-based controller is ready for 
operation. Such controllers have been realized in hardware and software for industrial process control applications.    

3.0 The system identification problem formulation 
 Figure 3.1 shows the structure of a tic-tac-toe board game called Jonda [17,18]. Consider a switched linear system 
comprising subsystems (nodes) connected as shown in the figure. In the series-parallel configuration, each horizontal, 
vertical, and diagonal row is a set of specially related nodes as obtains in electrical power system, industrial process control, 
oil/gas pumping, 
etc. It is assumed that the square nodes have greater capacity than the circular ones.  

 

The status of the whole system depends on the nodes such that: 
(1) A node may be in any of the states: failed (-1), standby/redundant (0), or working (1);  
(2) Working node failure is random and it is assumed that one node fails at a time instant;  
(3) Failed nodes are restored to normalcy within specified downtime; 
(4) A working node may be switched to standby after a specified maximum continuous working time; 
(5) After a minimum rest time, a standby node may be switched to working mode to stabilize the system; 
(6) Restored failed nodes are switched to standby mode; 
(7) System failure occurs if all nodes in a row fail; 
(8) Operational stability requires balanced configuration of standby and working nodes;  
(9) Switching is based on temporal parameters such as working time, standby time, etc.   
(10) Optimal switching control strategies are required to prevent system failure. 

The problem to be addressed is to: 
(a) Analyze the system using game- and control-theoretic methods; 
(b) Formulate analytical models of the system and its controller; 
(c) Identify the system parameters and switching control strategies 
(d) Simulate the system and evaluate its dynamic behaviour and the controller performance.   

In the rest of this paper, the term “the system” refers to the abstracted switching system as described above.  
 
4.0 Modelling the switched linear system 

4.1 System nodes configuration space 
From the possible node status values {-1,0,1} defined in section 3, information about the system state at any time is 
determined by the configuration of the 17 node values. That is, with each configuration we can identify the various system 
conditions and required control strategies. The number of possible configurations highlights the complexity of this system 
identification problem. Let the total nodes be N, failed nodes F, standby nodes S, and working nodes W. Then, the total 
system configuration is determined by the permutation P:  
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Figure 3.1: Jonda board game  
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P(N, F, S, W) = N!/( F !*S!*W!)         (4.1) 

Suppose as part of the design decision, 4 failed and 4 standby nodes are tolerable, then equation (4.1) evaluates to P(17,4,4,9) 
= 1.7017 x 106. Depending on the switching control policies, within this data pattern space are those that result to system 
conditions such as optimally safe, minimally safe, deadlock, failure threat, complete failure, etc. In the next section, these 
possible conditions are defined with some time scale attached to node records. For instance, deadlock occurs when no 
stabilization switching control can be safely performed and this indicates failure of multiple sets of subsystem due to, say, 
delayed failed node restoration. Predictive switching control strategies that will check such occurrences have to be identified.  

4.2 System safety factors and control policy specifications 
 Assuming a true competitive situation where player-1 is the controller and player-2 is an intelligent adversary that 
induces node failures in attempt to defeat the control strategies. The system safety factors and control policy are determined 
by analyzing the effects of node switching, including time constraints on the various nodes. 
 Let node time variables be downtime td, standby time ts, and working time tw. The pre-definable times are tdmax, tsmin, 
and twmax. The system conditions are defined algebraically as shown in Table 4.1, where asterisk (*) denotes node state in the 
set {-1,0,1}.  
 

Table 4.1: System safety conditions and node set configuration 

S/No System Safety 

 Condition 

Node set configurations  

Time constraint/Explanation  3-node row 5-node row 

1 Optimally safe  {1,1,*} {1,1,1,*,*} td ≥  tdmax, ts ≥ trmin, tw < twmax 

2 Minimally safe {1,0,-1} {1,1,-1,-1,-1} td ≥  tdmax, ts ≥ trmin, tw < twmax 

 
3 

Working square and 
circular nodes ratio  

See the explanation See the explanation  
Total ratio ≥ 0.5 is preferred 

4 Deadlock Highly constrained 
switching 

Highly  
constrained 
switching 

Successive switching Γ(1,0) and Γ(0,1) 
involving few nodes due to several 
nodes with td < tdmax, ts < tsmin 

5 Single row 
failure chance 

{-1, -1, 1} {-1,-1,-1,-,1, 1} tw < twmax, td < tdmax for the W and F 
nodes 

6 Multiple row failure 
chance 

{-1, -1, 1} 
where {1} connects 
several node row 

{-1,-1,-1,-,1, 1}, 
where {1} connects  
several node rows 

Two or more row failure chances, 
where tw ≤ twmax, td < tdmax 

7 System failure  {-1,-1,-1} {-1,-1,-1,-1,-1} td < tdmax for all failed nodes 

The node switching control policy can be summarized in the statement:  

Switch nodes to maintain at least minimum safe configuration by checking immediate and near-future occurrences of unsafe 
conditions such as (6) and (7) in Table 4.1.   
From the foregoing, switching control resulting to tolerable configurations (1) – (5) can be assigned weighted switching 
safety factors 1.0, 0.80, 0.60, 0.40, and 0.20 respectively. The intolerable conditions (6) and (7) are assigned 0.0, implying 
that the nodes cannot be switched. Derived in section 4.4.1 is a linear function for calculating system stability factors.    
4.3 Prediction and controller performance measures 
Two levels of prediction are identified for the control operations. The first level recognizes effects of failed nodes by 
analyzing system configurations based on control policy stated in section 4.2. The second level considers consequences of 
node switching by the controller to maintain safe operations. The second level is complicated by time and nodes pattern 
constraints, which may result to adverse effects such as unbalanced working node patterns, deadlocks, and near-future system 
failure chance.  
Generally, performance objective of a predictive controller may be trajectory tracking or steering the system from initial state 
to stable state. The performance measure is usually defined as a cost function to be minimized in the control process. The 
performance of a game-theoretic system controller can be based on cost function related to payoff values, search cost, or 
time-optimal control. For our experimental system, the performance measure is defined in terms of: 
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(1) Number of successful predicted switching controls before system failure; 
(2) Speed of the predictive switching control. 

With performance measure (2) for instance, controllability of the system is observed within some time horizon. In this case 
the system trajectory is described by equation:   
p′(t) = f(p(t), u(t), c(t))           
 (4.2) 
where p, u, and c are respectively, successful predictions before system failure, node failures, and controller inputs. These 
depend on feasible times: tdmax, tsmin, and twmax.  
 
4.4 The neural network controller model identification 
Based on the system data pattern, the controller structure is approximated by an adaptive bidirectional associative memory 
(ABAM) neural network model. ABAM is a general matrix-type operator for dynamic feedforward/feedback or static 
feedforward systems [19]. The model has two layers for input and output, and control memory that stores prototype data 
patterns for recognizing inputs. How the model is adapted to our system is discussed as follows. 
 
4.4.1 Input and output functions 
 In control applications the inputs to a neural network are usually real numeric values, which may have to be 
normalized to simplify computations. The types of possible output functions have been mentioned in section 2.2. For our 
system, the discrete ABAM model has output functions defined as f(a) = sign(a). Generally, if u and v are respectively the 
input and output vectors, the state of the feedforward/feedback discrete system is described by the equations: 
     1  for aui(k) > 0  
  ui(k+1) =  f(aui(k))  =   ui(k)  for aui(k) = 0    (4.3) 
       -1  for aui(k) < 0 
 

      1  for avj(k) > 0  
  vj(k+1) =  f(avj(k))  =   vj(k)  for avj(k) = 0    (4.4)  
     -1  for avj(k) < 0 
where  
  aui  = ∑ωij f(avi) + Φj  for i, j = 1…N     (4.5) 

and 

  avj = ∑ωjif(auj) + θ i  for i = 1…N,  j = 1..M    (4.6) 
As usual, ω is the node link weight matrix, while Φ and θ are input and output biasing factors.  
In more compact matrix notation,  
  u(k+1) = f(ωv(k))         (4.7) 
  v(k+1) = f(ωTu(k))        (4.8) 
Starting in a simple way, input/output process for our system is defined by the equation   
  vk+1  =  vk  + uk            (4.9) 
where, at a time instant k,  uk and vk are 17-element column vectors – denoting current input and previous system output, 
respectively. The new vector v produced is fed forward for prediction of the system conditions. 
 Let ck be the result of predicted switching control actions, then the output vector z, after control is expressed as:  
              zk =  vk + ck           (4.10) 
where ck and zk are also 17-element column vectors.  
 Suppose inputs to the nodes are (x1, x2,…, xn) and the link weights (ω11, ω12, …,ωnn), then the two simplest ways of 
associating x and ω to produce an outputs are φ(ωijxi) and ψ(∑ωijxi), where φ and ψ are functions that determine output node 
values. In the network, controller actions resulting to the node transitions do not depend on the weighted sum of the node link 
strengths. Rather, it is a consideration of node pairs, depending on the system safety factors. Thus, the switched discrete-time 
linear system is described by the state variables as: 
   x(t+1) = ω(t)x(t) + βu(t)        (4.11) 
where at time t, x(t) is the node state variable vector, and ω(t) is a 17x17 matrix of the node link weights, u(t) is control input, 
and β is the biasing factor. We note that equation (4.11) corresponds to basic equation (1.3). Switching control for stabilizing 
the system configuration involves finding appropriate switchable standby and working node pairs. The switching function for 
such node pairs is expressed as:  
f(xi, xj) = ωij(xi+xj) + βu;   i, j = 1, 2,…, 17 and  xi ≠ xj   (4.12) 
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The biasing factor β is used to facilitate iterative search for switchable nodes that result to safe configuration as defined in 
Table 4.1. With the possible system safety conditions stated in section 4.2, the node link weights are in the range 0.0 ≤ ωij 

≤1.0, so that β = -0.20. A node link weight of 0.0 implies that switching of ith and jth node pairs is either invalid or unsafe.   
 
4.4.2 Switching control rules formulation 
In section 2.1, it is mentioned that in game-theoretic approach, system control process is modelled as algebraic combinatorial 
game. For our system, the control rules are formulated based on some practical considerations. Suppose, by design policy, it 
is decided that the least switchable node times are 100%, 25%, and 80% of the tdmax, tsmin, and twmax, respectively. Then, using 
the algebraic properties of the system nodes, we formulate the control rules as follows. 
Let x be is a vector of the system configuration, and xi and xj be node pairs to be considered in the switching transition Γ(xi, 
xj). The arithmetic (xi + xj) for xi ≠ xj and i ≠ j, results to the data set {-1,0,1}. At start-up, ωi,j is initialized to 0.0, and 
thereafter the values are calculated depending on the system configuration. The following are examples of the control rules: 
 
   if (xi  = -1 and  td/tdmax (i) ≥ 1.0) then xi = 0; ts (i)  = tsmin       (4.13 ) 
if  (x i + xj = 1 and ts/tsmin (i) ≥  0.25 and tw/twmax (j) ≥ 0.80) then ωi,j = 1.0    (4.14) 
 
Equations (4.13) and (4.14) are the basic node weights calculations for which no training or adaptation is required. 
Considering equation (4.12), a sample adaptable switching control rule for working-to-standby transition Γ, is defined as 
follows: 
If   0.20 ≤ f(xi, xj) ≤ 1.0 then Γ(W, S)       (4.15) 

Similar transitions rules can be defined for failed-to-standby Γ(F, S), failed-to-working Γ(F, W), etc. A set of rules defined by 
equation (4.15) corresponds to switching rule of equation (2.4), and this will produce switching sequences corresponding to 
equation (2.5). The switching control that results to unsafe configuration indicates system failure due to inaccurate 
predictions. Thus, accuracy of prediction is the basis of the controller performance evaluation, and it is a measure of 
completeness of the control parameters and rules. 
With the preceding formulations and switching control rules, the controller model has been identified. The controller 
performance and system trajectory are determined through simulation tests reported in section 5.  
 
5.0   Simulation and performance evaluation 
  The simulation has the following two major objectives:  
(1)    Discovering complementary low-level control strategies required to handle induced unsafe system configurations. For 
instance, it is discovered that delay in state and control is required in certain system states in order to satisfy some safety 
constraints. 
(2)     Evaluating the identified system behaviour as depicted by its time-based trajectories. 
To achieve these objectives, the system is tested on random node failure and ordered node failure modes. As a form of worst-
case testing, the latter uses knowledge of current system configuration to induce node failures aimed at defeating the control 
strategies.  
As the system behaviour depends on its temporal parameters td, tdmax, ts, tsmin, tw, twmax, and mean time before failure (MTBF), 
it would require several simulation tests involving various combinations of these parameter values to determine the optimal 
time values. As the parameters tdmax, and twmax are connected with reliability (in terms of availability and resilience), they are 
used as independent variables in separate simulation tests. Taking the unit time as a second, the system is tested based the on 
the subsystems’ time parameters: tdmax = 2.0, tsmin = 0.5, twmax = 1.0, and 0.1 ≤ MTBF ≤ 1.0. With these, the simulation output 
includes count of successful switching controls before system failure, switching time, and speed.  
Presented in Table 5.1 is a sample of the simulation output. Data labels with subscript (1) are for random node failure and 
those with subscript (2) are for ordered node failure. The selected sample simulation output is based mostly on those with 
both high switching control counts and fast switching speed.  The graphs are presented in Figures 5.1, 5.2, and 5.3.  

5.1 Performance evaluation  

 Referring to the identified system behavioural graphs presented in Figures 5.1, 5.2, and 5.3, it can be observed that: 
(1) Both random and ordered node failure test modes give similar behavioural graphs. 
(2) With the decision on number of failed, standby, and working nodes, and temporal parameters, tdmax = 2.0, tsmin = 

0.5, twmax = 1.0, the whole system tends to work for a very long time without failure if MTBF = 1.00, as particularly 
indicated by Figure 5.1. 

(3) Figure 5.3 shows that the switching control speed is almost sinusoidal, which is similar to real-life situations where 
intelligent search for optimal decision parameters is like traversing hills, valleys, and plateaux.  
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(4) Considering the dimension of the abstracted identification problem, the system behaviour and controller 
performance are both reasonable and consistent with known control system theory as the system behavioural graphs 
are apparently classifiable as exponential growths, as shown by Figures 5.1 and 5.2. 

 On the whole, the result shows that our game theoretic abstraction and neural computing has   yielded provable and valid 
system model.    
 

Table 5.1: Identified system simulation test output 
MTBF CtrlCnt(1) CtrlTime(1) CtrlCnt/Sec(1) CtrlCnt( 2} CtrlTime(2) CtrlCnt/Sec(2) 

0.10 104 4.84 21.4876 39 1.65 23.6364 
0.15 767 26.75 28.6729 22 0.82 26.8293 
0.20 598 20.82 28.7224 20 0.71 28.1690 
0.25 894 38.72 23.0888 71 3.35 21.1940 
0.30 776 24.44 31.7512 157 8.35 18.8024 
0.35 1121 36.85 30.4206 296 11.59 25.5007 
0.40 1565 51.63 30.3118 257 10.06 25.5467 
0.45 2834 92.77 30.5487 203 9.93 20.4289 
0.50 4514 208.77 21.6219 408 13.75 29.6485 
0.55 5178 249.09 20.7877 587 29.60 19.8344 
0.60 6863 332.79 20.6226 604 24.09 25.0856 
0.65 6706 327.91 20.4507 844 40.81 20.6748 
0.70 8751 405.57 21.5770 612 24.77 24.7073 
0.75 9505 485.10 19.5939 888 43.29 20.5167 
0.80 9701 484.88 20.0070 1203 59.49 20.2273 
0.85 11927 553.54 21.5468 1534 63.94 23.9912 
0.90 15907 695.19 22.8815 1865 96.48 19.3335 
0.95 15831 1424.43 11.1139 4395 212.63 20.6674 
0.99 18146 912.42 19.8878 7683 373.69 20.5601 

 
 

Figure 5.1: System switching control counts versus  
Subsystem MTBF 
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6.0 Conclusion  
System identification problems occur in biological, soil, econometric, engineering systems design, etc. Currently, intelligent 
methods are being employed to overcome some of the limitations of the classical methods. In this bootstrapping experiment, 
game strategies and neural computing have been explored in prototype switched linear system identification. To be practical, 
a tic-tac-toe board game called Jonda is redefined as switched linear system and used as experimental object. From first 
principle abstractions, the analytic model is identified and the controller structure approximated by an adaptive neural 
network. The system is simulated to ascertain its behaviour based on random and ordered node failure modes. Analysis of the 
simulation output gives classifiable behavioural graphs and reasonable performance.    
Finally, this study has practically demonstrated the effectiveness of intelligent methods in system identification from first 
principles. Besides system identification, our approach can be found useful in prototype switching system control modelling 
and experimental validation of theoretical models of some switched linear systems. 
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