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Abstract

This study deals with application of game-theoretic strategies and neural
computing to switched linear system identification, wherein some of the subsystems may
bein failed, standby, or working states. The controller isto detect failed subsystems, and
switch standby and working subsystems to maintain stable system configuration. Its
performanceis based on a number of successful stabilizing controls before entire system
failure. A strategy board game is redefined as switched linear system and used in the
experimental study. Mathematical model of the system is derived from its physical
description, and the controller is modelled as adaptive neural network. The analysis
results to estimation of system parameters and identification of stabilizing switching
control rules. The system trajectory is ascertained by simulation tests, wherein
subsystem failure time intervals are varied. The study demonstrates feasibility of the
non-classical methods in system identification from first principles. Besides prototype
system identification, our methodology has applications in combinatorial switching
control modelling and experimental validation of mathematical models of switched
linear systems.

1.0  Introduction
The basic problem of linear system identificatierekplained for continuous- and discrete- time $ype follows. A linear
continuous-time system is described by the basiatians

X'(t) = A(t)x(t) + B(u(t) (1.2)

y(®) = C()x(t) + D(t)u(t) (1.2)
where x is the state variable vector, u is the@migrg input, y is output vector or system responggle A, B, C, and D are
the associated coefficient matrices. In real-lfemay be physical quantities found in chemicalctieal, mechanical,
thermal systems, etc.
Similarly a discrete-time linear system is desatibg the basic equations

x(k+1) = A(K)x(k) + B(k)u(k) (1.3)

y(K) = C(K)x(k) + D(K)u(k) (1.4)
where k denotes the time instants or sequencegot®in the system.

For both types of system, identification is theqass of determining coefficient matrices A, B,a@d D from the
input/output data. When these are determined, matieal methods can be applied to test for corabdlity, observability,
and stability. Classical methods for determining toefficient matrices include least squares, stpce modelling,
calculation of Markov parameters, etc [1-3]. Relgemtue to the need to deal with uncertaintiedintification problems,
intelligent methods such as game-theoretic strasegieural networks, fuzzy logic, and expert syserhnology are being
integrated with classical methods. Particularlyeligent methods are applied to nonlinear, reactand ill-conditioned
systems [4-7]. For instance, game-theoretic stiedegye used to investigate conditions for relaxingightening controls,
while neural network is used to model controlleusture to deal with nonlinear and adaptive aspects
In this study, game-theoretic strategies and nexgalputing are applied to switched linear systeeniification. A board
game called Jonda is redefined as switching systach used in the experimental study. Starting frdwm physical
description, the system is analyzed using gameesgies, linear switching control concepts, and akgomputing to
develop the analytical simulation model. To asdertiae validity of the estimated parameters androtler performance,
the simulator output is analyzed, and system trajgaletermined.
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2.0 Game strategies and neural computing in systeigientification
2.1 Game strategies in switched linear system idtéfication
Game-theoretic strategies are used as optimizatietmods in control engineering, operations reseaand other
computer-aided design problems [8-11]. Like conpalblems, strategy games may be continuous-timéismrete-time
systems. Continuous-time games are differentialegasnch as pursuit-evasion and trajectory tracgarges, while discrete
games (e.g. board games) are formulated as differequations. Qualitatively, a discrete strategneyaan be defined as a
7-tuple:
G=(N,S$,Q X VY,Q) (2.1)
where
(1) N is the number of players;
(2) Sis a set of strategies available to the players:
(3) & is the set of rules that orders the game;
(4) Q is the set of stages or internal states;
(5) X is the finite set of admissible inputs.
(6) Y is the finite set of output, or system configioat
(7) Qs the payoff or performance objective function.
If a control system is set up as two-player ganenaio, the game object is the system to be cdedrothe controller is
player-1, while input sources such as the operafuts, internal and external disturbances carubpéd together as player-
2. Multiplayer games are used to study distributentrol systems [12,13]. For most control systeentdication problems,
N, X, and Y are known. The other aspect$,3Q, andQ may be partially known or entirely unknown andséadorm the
identification problem space.
In a game-theoretic approach, the game-like cosiyrsiem is modelled as a mathematical object, whéecontrol process is
modelled as an algebraic combinatorial game. Irtrobtheoretic form, a discrete-time game can heressed as:
x(t+1) = f(x(t), u(t), c(t)) (2.2)
y(®) = g(x(t), u(t), c(t)) (2.3)
where x(t)e R™ is the state space vector, WtR" is the external input, c(t) is the controller ihpy(t) is the output vector, f,
and g are input and output functions, respectively.
The switching rule for the system can be defingthie equation [14-16]:
q(t+1) =o(q(t), x(t), c(t). (2.4)
where ¢ is the switching modegt([ty, thad, and® is a mapping function that orders the switchingusmces. If switching
takes place at time instangst, ..., ,... so that a subsystem is switched at tijrhén the sequence is expressed as:
$= Qo to), @u to), ..., @ 1), - forj=0,1,..., (2.5)
We note that for some adaptive or predictive dviiitg control problems, the internal processes tiinowhich the controller
decides on switching sequences can be consideréid-tas-toe game strategy. Hence, game stratemiasbe applied in
modelling the switching controller.

2.2 Neural network in switching controller model icentification

We consider controller model identification as theblem of determining the controller mathematistiucture and
algorithms. For some problems, neural networks (N&& be constructed and adapted to approximatdgiregsystem
controller characteristics due to the features itiatide: (a) Suitability to many interconnectetsystems; (b) Well-defined
mathematical structure, implicit parallelism, sttital learning, and ability to classify patterif¢) Integration of suitable
(non)linear output filtering functions to producecision parameters; (d) The basic topologies agodriéthms can be
enhanced to suit adaptive, predictive, and optioaadtrol strategies. Figure 2.1a shows a multilayeural network with
single output, while

Figure 2.1b shows a cascaded set of neural netfrksultivariable control.
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Figure 2.1: Basic structure of neural network based control system
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NNSs are suited to system identification, as theyrast explicitly programmed, but have to be traine@dapted to particular
problems. For control applications, the controlbhaviour is established during the training precd&she training is a
statistical learning process, relating inputs, coteg node link weights, output nodes’ values, aedirdd (predefined)
output values. Let the set of inputs be X 3, (%, ...,.Xn) and Y = (¥, Y», ..., V) be outputs computed from various
combinations of the inputs. The sets X and Y atated by matrix operator or node link weightg, \w&nd node activation
function that may be linear, sigmoid, hyperboliagant, gaussian, ramp, sign function, etc. Not anynature of the
problem, the actual mathematical relationship betwé¢ and Y depends also on the chosen networkagydke.g. multilayer
perceptron, adaptive bidirectional associative mgmmeelf-organizing maps, etc), and training altjoni. The mathematical
formulations and training algorithms abound in tiberature. A fully trained or adapted NN-based tcolter is ready for
operation. Such controllers have been realizedidware and software for industrial process corpgllications.

3.0 The system identification problem formulation

Figure 3.1 shows the structure of a tic-tac-toardaame called Jonda [17,18]. Consider a switdinedr system
comprising subsystems (nodes) connected as showheirfigure. In the series-parallel configurati@gach horizontal,
vertical, and diagonal row is a set of speciallaterd nodes as obtains in electrical power systedustrial process control,
oil/gas pumping,
etc. It is assumed that the square nodes havesgiegiacity than the circular ones.
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Figure 3.1: Jonda board game

The status of the whole system depends on the rsuabsthat:
(1) A node may be in any of the statésled (-1), standby/redundant (0), or working (1);
(2) Working node failure is random and it is assumexd ¢ime node fails at a time instant;
(3) Failed nodes are restored to normalcy within spegtidlowntime;
(4) A working node may be switched to standby aftegpecgied maximum continuous working time;
(5) After a minimum rest time, a standby node may bicéed to working mode to stabilize the system;
(6) Restored failed nodes are switched to standby mode;
(7) System failure occurs if all nodes in a row fail;
(8) Operational stability requires balanced configarabf standby and working nodes;
(9) Switching is based on temporal parameters suclodsmng time, standby time, etc.
(10)Optimal switching control strategies are requireg@tevent system failure.
The problem to be addressed is to:
(&) Analyze the system using game- and control-theométhods;
(b) Formulate analytical models of the system andatgroller;
(c) Identify the system parameters and switching cdstrategies
(d) Simulate the system and evaluate its dynamic bebagnd the controller performance.
In the rest of this paper, the term “the systenféneto the abstracted switching system as destebeve.

4.0 Modelling the switched linear system

4.1 System nodes configuration space
From the possible node status values {-1,0,1} defiin section 3, information about the system stdtany time is
determined by the configuration of the 17 node &slurhat is, with each configuration we can idgrtife various system
conditions and required control strategies. The memof possible configurations highlights the coexitly of this system
identification problem. Let the total nodes be Bildd nodes F, standby nodes S, and working node3h#h, the total
system configuration is determined by the permaoitel:
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P(N, F, S, W) = NY/( F*SI*WI) (4.2)

Suppose as part of the design decision, 4 faileiddastandby nodes are tolerable, then equation ¢dluates to P(17,4,4,9)
= 1.7017 x 18 Depending on the switching control policies, wwitlthis data pattern space are those that resudystem
conditions such as optimally safe, minimally safeadlock, failure threat, complete failure, etcthe next section, these
possible conditions are defined with some time es@dtached to node records. For instance, deadiockrs when no
stabilization switching control can be safely pemied and this indicates failure of multiple setssabsystem due to, say,
delayed failed node restoration. Predictive switghtontrol strategies that will check such occuresrhave to be identified.

4.2 System safety factors and control policy speiftions
Assuming a true competitive situation where plalyés the controller and player-2 is an intelligadtversary that
induces node failures in attempt to defeat therobstrategies. The system safety factors and cbptlicy are determined
by analyzing the effects of node switching, inchgitime constraints on the various nodes.

Let node time variables be downtimedtandby timegt and working time,t The pre-definable times arg.ts tsmin
and fymax The system conditions are defined algebraicalgtaown in Table 4.1, where asterisk (*) denotetersiate in the

set {-1,0,1}.

Table 4.1: System safety conditions and node setrfiguration
S/No | System Safety Node set configurations
Condition 3-node row 5-node row Time constraint/Explanation
1 Optimally safe {1,1,% {1,1,1,%* 1= taman &2 tmin tw < tymax
2 Mlnlmally safe {1,0,'1} {1,1,'1.'11'1} (;2 tdma)q tsz trmin: tW < tWmax
Working square and | See the explanation See the explanatign
3 circular nodes ratio Total ratio> 0.5 is preferred
4 Deadlock Highly constrained | Highly Successive switching(1,0) andl'(0,1)
switching constrained involving few nodes due to several
switching nodes with ¢ < tyma & < tmir
5 Single row {-1,-1,1} {-1,-1,-1,-1, 1} v < tymaw ta< tymaxfor the W and F
failure chance nodes
6 Multiple row failure {-1,-1,1} {-1,-1,-1,-,1, 1}, Two or more row failure chances,
chance where {1} connects | where {1} connects | where {, < tymax 4 < tumax
several node row several node rows
7 System failure {-1,-1,-1} {-1,-1,-1,-1,-1} 4 & tymax for all failed nodes

The node switching control policy can be summarirettie statement:

Switch nodes to maintain at least minimum safe configuration by checking immediate and near-future occurrences of unsafe
conditions such as (6) and (7) in Table 4.1.
From the foregoing, switching control resulting taderable configurations (1) — (5) can be assigneighted switching
safety factors 1.0, 0.80, 0.60, 0.40, and 0.20e&sgely. The intolerable conditions (6) and (7¢ assigned 0.0, implying
that the nodes cannot be switched. Derived in@eeti4.1 is a linear function for calculating syststability factors.
4.3 Prediction and controller performance measures
Two levels of prediction are identified for the ¢ah operations. The first level recognizes effeofsfailed nodes by
analyzing system configurations based on contritypetated in section 4.2. The second level carsidonsequences of
node switching by the controller to maintain safemtions. The second level is complicated by tamd nodes pattern
constraints, which may result to adverse effecth s1s unbalanced working node patterns, deadlacksnear-future system
failure chance.
Generally, performance objective of a predictivatoaler may be trajectory tracking or steering fiystem from initial state
to stable state. The performance measure is usdeflged as a cost function to be minimized in ¢batrol process. The
performance of a game-theoretic system controber lse based on cost function related to payoffeslgearch cost, or
time-optimal control. For our experimental systée performance measure is defined in terms of:
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(1) Number of successful predicted switching contr@fole system failure;

(2) Speed of the predictive switching control.
With performance measure (2) for instance, corghility of the system is observed within some tinogizon. In this case
the system trajectory is described by equation:
p'(t) = f(p(®), u(t), c(t)

(4.2)

where p, u, and c are respectively, successfuligireds before system failure, node failures, andtwller inputs. These
depend on feasible timegmty tsmin aNd fimax

4.4 The neural network controller model identificaion

Based on the system data pattern, the controllectste is approximated by an adaptive bidirecti@ssociative memory
(ABAM) neural network model. ABAM is a general mattype operator for dynamic feedforward/feedbaak static
feedforward systems [19]. The model has two layersnput and output, and control memory that stopeototype data
patterns for recognizing inputs. How the modeldated to our system is discussed as follows.

4.4.1 Input and output functions

In control applications the inputs to a neuralwark are usually real numeric values, which mayeh&y be
normalized to simplify computations. The types ofgible output functions have been mentioned itige®.2. For our
system, the discrete ABAM model has output functidefined a$(a) = sign@). Generally, if u and v are respectively the
input and output vectors, the state of the feedfiodfeedback discrete system is described by thatwups:

1 for a(k) >0
u(k+1) = f(au(k)) = u(k) for a(k) =0 (4.3)
-1 for a(k) <0
1 for g(k) > 0
v(k+l) = f@(k) = | w(K) for a(K) = 0 (4.4)
-1 for g(k) <0
where
ai = Yo f@;) + fori,j=1...N (4.5)
and
a; :za)jif(an)+ei fori=1...N, J:].M (46)

As usualw is the node link weight matrix, while and6 are input and output biasing factors.
In more compact matrix notation,

u(k+1) =f(wv(k)) 4.7

v(k+1) =f(w"u(k)) (4.8)
Starting in a simple way, input/output processdor system is defined by the equation

Vier = Vi + U (4.9)

where, at a time instant k,, and y are 17-element column vectors — denoting curneiiti and previous system output,
respectively. The new vector v produced is fed fordifor prediction of the system conditions.

Let ¢ be the result of predicted switching control atsiocthen the output vector z, after control is esped as:

= Wt G (4.10)
where ¢ and z are also 17-element column vectors.

Suppose inputs to the nodes atgXo, ..., X,) and the link weightse(y;, ®15, ...,0nn), then the two simplest ways of
associatingk ande to produce an outputs aggw;x) andy(Zw;x;), wherep andy are functions that determine output node
values. In the network, controller actions resugitio the node transitions do not depend on the Methsum of the node link
strengths. Rather, it is a consideration of nodespdepending on the system safety factors. Timasswitched discrete-time
linear system is described by the state varialdes a

X(t+1) =o(t)x(t) +pu(t) (4.11)
where at time t, x(t) is the node state variablegtae andw(t) is a 17x17 matrix of the node link weights,)ugtcontrol input,
andp is the biasing factor. We note that equation (#cbtresponds to basic equation (1.3). Switchingfrod for stabilizing
the system configuration involves finding approfaiawitchable standby and working node pairs. Wigchking function for
such node pairs is expressed as:
f(x;, Xj) = Q)ij(Xi+Xj) + Bu; ihbj=1,2,..,17 and R (4.12)
Journal of the Nigerian Association of Mathematical Physics Volume 19 (November, 2011)61 — 68
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The biasing factof is used to facilitate iterative search for switzleanodes that result to safe configuration asneeffiin
Table 4.1. With the possible system safety conalitistated in section 4.2, the node link weightsimrtie range 0.& oj;
<1.0, so thap = -0.20. A node link weight of 0.0 implies thatissking of i" and |" node pairs is either invalid or unsafe.

4.4.2 Switching control rules formulation

In section 2.1, it is mentioned that in game-thgor@pproach, system control process is modellealgebraic combinatorial
game. For our system, the control rules are fortadldased on some practical considerations. Suppgsesign policy, it
is decided that the least switchable node time4.@086, 25%, and 80% of thg.tx tsmin @aNd fmax respectively. Then, using
the algebraic properties of the system nodes, wautate the control rules as follows.

Let x be is a vector of the system configuratiard & and x be node pairs to be considered in the switchiagsitionI'(x;,
X). The arithmetic (x+ x) for x # X and i# j, results to the data set {-1,0,1}. At start-up; is initialized to 0.0, and
thereafter the values are calculated depending®sytstem configuration. The following are exampiethe control rules:

if (xi =-1and dtgmax = 1.0) then x= 0; & ;) = tsmin (4.13)
if (xi +x =1 and tsminy = 0.25 and¥/tymax = 0.80) therw;; = 1.0 (4.14)

Equations (4.13) and (4.14) are the basic node hieigalculations for which no training or adaptatis required.
Considering equation (4.12), a sample adaptabléclsing control rule for working-to-standby traneiiil', is defined as
follows:

If 0.20< f(xi, %) < 1.0 therl'(W, S) (4.15)

Similar transitions rules can be defined for faiteestandbyl'(F, S), failed-to-workind'(F, W), etc. A set of rules defined by
equation (4.15) corresponds to switching rule afatipn (2.4), and this will produce switching seoges corresponding to
equation (2.5). The switching control that results unsafe configuration indicates system failuree do inaccurate
predictions. Thus, accuracy of prediction is thesibaf the controller performance evaluation, andsia measure of
completeness of the control parameters and rules.

With the preceding formulations and switching cohtrules, the controller model has been identifigthe controller
performance and system trajectory are determimedigin simulation tests reported in section 5.

5.0 Simulation and performance evaluation

The simulation has the following two major objees:
(1) Discovering complementary low-level contstiategies required to handle induced unsafe systerfigurations. For
instance, it is discovered that delay in state ewomtrol is required in certain system states ireof satisfy some safety
constraints.
(2) Evaluating the identified system behaviasidepicted by its time-based trajectories.
To achieve these objectives, the system is testedrmdom node failure and ordered node failure mode a form of worst-
case testing, the latter uses knowledge of cusgstem configuration to induce node failures airmatedefeating the control
strategies.
As the system behaviour depends on its temporahpatersd tymax ts tsmin twr tvmax @and mean time before failure (MTBF),
it would require several simulation tests involviverious combinations of these parameter valuetetermine the optimal
time values. As the parametegs.l, and §,max are connected with reliability (in terms of availiy and resilience), they are
used as independent variables in separate simulaats. Taking the unit time as a second, thesyst tested based the on
the subsystems’ time parametegsat= 2.0, tmin = 0.5, {max= 1.0, and 0.X MTBF < 1.0. With these, the simulation output
includes count of successful switching controlobekystem failure, switching timand speed.
Presented in Table 5.1 is a sample of the simulatigtput. Data labels with subscript (1) are ford@am node failure and
those with subscript (2) are for ordered node faildhe selected sample simulation output is basestly on those with
both high switching control counts and fast switchspeed. The graphs are presented in Figure5.2,1and 5.3.

5.1 Performance evaluation
Referring to the identified system behaviourapipapresented in Figures 5.1, 5.2, and 5.3, ibeaobserved that:

(1) Both random and ordered node failure test modes gjimilar behavioural graphs.

(2) With the decision on number of failed, standby, amiking nodes, and temporal parametefgt 2.0, tmin =
0.5, tymax = 1.0, the whole system tends to work for a vengltime without failure if MTBF = 1.00, as partiatly
indicated by Figure 5.1.

(3) Figure 5.3 shows that the switching control speealost sinusoidal, which is similar to real-&i¢uations where
intelligent search for optimal decision parametsilike traversing hills, valleys, and plateaux.
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(4) Considering the dimension of the abstracted idieatibn problem, the system behaviour and controlle
performance are both reasonable and consistenkwittvn control system theory as the system behaafiguaphs
are apparently classifiable as exponential grovdshown by Figures 5.1 and 5.2.

On the whole, the result shows that our game #t@oabstraction and neural computing has yielgiedable and valid
system model.

Table 5.1: Identified system simulation test output

MTBF [CtriICnt(1) CtrlTime(1) CtriCnt/Sec(1) CtriCnt( 2} [CtrlTime(2)  [CtriCnt/Sec(2)
0.10 104 4.84 21.4876 39 1.65 23.6364
0.15 767 26.75 28.6729 22 0.82 26.8293
0.20 598 20.82 28.7224 20 0.71 28.1690
0.25 894 38.72 23.0888 71 3.35 21.1940
0.30 776 24.44 31.7512 157 8.35 18.8024
0.35 1121 36.85 30.4206 296 11.59 25.5007
0.40 1565 51.63 30.3118 257 10.06 25.5467
0.45 2834 92.77 30.5487 203 9.93 20.4289
0.50 4514 208.77 21.6219 408 13.75 29.6485
0.55 5178 249.09 20.7877 587 29.60 19.8344
0.60 6863 332.79 20.6226 604 24.09 25.0856
0.65 6706 327.91 20.4507 844 40.81 20.6748
0.70 8751 405.57 21.5770 612 24.77 24.7073
0.75 9505 485.10 19.5939 888 43.29 20.5167
0.80 9701 484.88 20.0070 1203 59.49 20.2273
0.85 11927 553.54 21.5468 1534 63.94 23.9912
0.90 15907 695.19 22.8815 1865 96.48 19.3335
0.95 15831 1424.43 11.1139 4395 212.63 20.6674
0.99 18146 912.42 19.8878 7683 373.69 20.5601
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6.0 Conclusion

System identification problems occur in biologicsbjl, econometric, engineering systems design,@icrently, intelligent
methods are being employed to overcome some dintlitations of the classical methods. In this bam@igping experiment,
game strategies and neural computing have beeorexpin prototype switched linear system identifa To be practical,
a tic-tac-toe board game called Jonda is redefamdwitched linear system and used as experimehjatt. From first

principle abstractions, the analytic model is iffeed and the controller structure approximated dyy adaptive neural
network. The system is simulated to ascertaingtsliour based on random and ordered node failodes Analysis of the
simulation output gives classifiable behaviourapirs and reasonable performance.

Finally, this study has practically demonstrated é#iffectiveness of intelligent methods in systeentdication from first

principles. Besides system identification, our &ggh can be found useful in prototype switchingesyscontrol modelling
and experimental validation of theoretical moddlsame switched linear systems.
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