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Abstract

Generally, the controllability and observability of controllable systems were treated
separately. In this paper, through the duality condition, the relationships between
matrices of controllable system and observable system which ensure that controllable
systems are observable are derived. This new result was established as a result of
comparison of controllable and observable gramian matrices.
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1 Introduction:

For adynamical system to stand the test of time, controllability, observability and stability conditions of such systems must
be known. This is one of the major problems facing control system engineers. Observability is the ability to observe or to
measure the output of all the parameters or state variables in the system. Controllability is the ability to move a system from
any given state to another desired state, using the input u. The controllability condition is that the existence of such an input
should be assured. Stability, on its own, is often phrased as the bounded response of the system to any bounded input.

For any dynamical system to be successful, it must have these properties; that is observability, controllability and
stability properties. For linear control systems such properties can be maintained with minimal conditions. For nonlinear
control systems, uncertainties present a big challenge to the system engineers who work hard to maintain these properties
using limited information.

For purposes of clarity, let us consider these properties one by one. Let us consider the system represented by

X = AX(t) + Bu(t) (1.1)

y(t) = Cx(t)
Where x, u and y are n-vector, m-vector and p-vector respectively and A,B, and C are respectively nx n,nx m, and px n
constant matrices which we here refer to as controllable matrices.

2. Controllability.
For a linear system given by (1.1), if there exists an input u which transfers the initiad state X(0) = X, to the state

X(t,) = X, inafinitetime t , the state X, is said to controllable. If all the initial states are controllable, the system is said to
be completely controllable. If X = 6 , the zero state, the system is said to be null-controllable (Eke, 2000).
It is known (Stephen, 1975) that the unique solution of the linear state equation
x = A(t)x(t) + B(t)u(t)
X(t) =X,

(2.1)
isgiven by
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t
X(t) = ¢t to)[ %, + [ At 9)B(s)u(t)ds] (2.2)
f
where @(t, S) isthetransition matrix satisfying

At L) = AD)@t,t,) for t=t,.
and @(0,0) =, theidentity matrix. The solution of (2.1) by Katsuhisa et al (1988), is given by

x(t) =eMx, + '[ M IB(s)u(s)ds (2.3)
0

If the system is null-controllable, there existsan input  X(t;) = X, =0 at afinitetime t =1, such that after multiplying
(2.3) by € we get

[
—X, = j e "B(s)u(s)ds (2.4)
0

So any controllable system will satisfy (2.4) and for a completely controllable systems, every state X, in U :

satisfies (2.4) with t, > 0. From (2.4) it isfound that complete controllability of a system depends on controllable matrices
A and B and isindependent of the output matrix C.

Definition 2.1 Dauer (1971)
A set of vector functions {Xl, Xy yeees Xk} issaid to be linearly independent over finiteinterval | if for
every set of non zero vectors (al, ..., ak) £ CX , there exists a subset J of | with positive measures
k
suchthat » ax #0 forallteJ.
i=1
The following simple theorems, due to Dauer (1971), characterize controllability; that is
Theorem 2.1 Assume B € L™, the system (1.1) is completely controllablein L* if and only if the rows of the matrix

functions { X (t)B(t)} arelinearly independent over I.
Theorem 2.2.

Let2< p<oo,andassumethat B& L, system (1.1) is completely controllablein L if and only if
W= j X(5)B(S)B" ()X " (s)ds is positive definite.

Theorem 2.3
Suppose A& L' and B LP,1< p< oo and assume that the system (2.1) is completely

1 1
controllablein LY, =+ = =1. Thereexists & > 0 such that if |A—C |p +|B— D|p <& ,then

P q
the system
y=C(t)y+D(t)u (25)
is completely controllablein LY.
Lemma 2.1

Dauer (1971) Suppose W is positive definite n x n constant matrix. There exists £ >0 such that if
the constant n x n matrix V satisfies I\N —V| < &,thenV ispositive definite.

If we assume the conditions of Theorem 2.3. then, for every r, p< T <oo, thereexists £ >0 such
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thatif |A—C| +|B-D| <&, then(2.5)iscompletely controllablein LY.
Apart from the above three rather simple theorems due to Dauer (1971), we have the
following crucial fact in complete controllability, that is

Theorem 2.4Katsuhisa et al (1988)
The necessary and sufficient condition for the system (1.1) to be completely controllable
is one of the following conditions;

[
1 W(o,t) = I e BB e "dt isnons ngular.
0

[ W(O,t,) is called controllability gramian and (.)" denotes matrix transpose]

2 The controllability matrix & =[B, AB, A’B, ..., A"B] hasrank n.
Proof:
Condition 1. Sufficiency:

If W(O,t,) given aboveis singular, the following input can be applied to the system

u(t) = -B"e ' W™(0,t,) %, (2.6)
For the input (2.6), the state of the system (2.3) is given by

x(t) = e™x, —e™{ j e "*BBTe " *dgW*(0,t,)%, =0
0

for any initial state X,. Therefore, the system (A , B) is controllable.

Necessity:
Assume that although W/(0, tl) issingular for any t; > 0, there exists a non zero n-vector
a such that
Y
a'W(O,t)a = j a"e”BB'e* *ads=0 2.7
0
which yields for any t
a’e™=0",t=0,a#0 (2.8)
From the assumption of controllability, there exists an input u satisfying (2.4). Therefore from
(2.4) and (2.8)
4
-a'x,=a’ I e *B(s)u(s)ds=0 (2.9)
0

holds for any initial state X, . By choosing X, =@, (2.9) gives & = 0, which contradicts the non-

zero property of & .Therefore the non-singularity of W(0,t,) is proved.
Condition 2. Sufficiency;

Let usfirst assumethat if therank of ¢ = N, till the system is not controllable. We show  that thisisa
contradiction leading to the conclusion that the system is controllable. By the above assumption, that the system is not

controllable and that the rank of ¢ =N, W(0,t,) issingular. Therefore (2.8), that is a’'eB=0",T=0,a#0,holds.
Derivatives of equation (2.8) at t = 0 yields
T AkR — — _
a A B - 0, k - 0,1,2,..., n 1. (2'10)
which isequivalent to
a'[B,AB,A’B,..., A"'Bl=a'é=0"

This contradicts the assumption that the rank & = N, so the system is completely controllable.

(2.12)
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Necessity:
Let us assume that the system is completely controllable, but rank ¢ < N.From this assumption, there exists a non-

zero  satisfying (2.11).From the Cayley-Hamilton theorem (Chi-Tsong, 1984), A™ can be expressed as a linear
combinationof |, A, ..., A" which yields

a'e®B=0",t=>0,a%0.
So,

tl
0= I a'e BB e *ads=a"W(0,t,)a 2.12)
0

Since the system is completely controllable W(O,tl) is non singular from condition 1 above. Then @ in (2.12) is zero,

which contradicts the assumption that @ isnon zero. So rank & = N, completing the proof of the theorem.

2 OBSERVABILITY.
When using the output of the system (1.1) measured fromtimet = 0 to time t ={,, if the initial state x(0) = X, is uniquely

determined, X, issaid to be observable. The output of the system (1.1) is given by Katsuhisa et al (1988) as
t
y(t) =Ce™x, +C j e""9Bu(s)ds 3.1
0

We note that the output and the input can be measured and used. So a signal 7 can be obtained from u and y using
the formula by Katsuhisa et al (1988)

t
n(t) = yt)-C j e""9By(s)ds 3.2)
0
=Ce™x,

Since p is usually smaller than n, X,can not be determined uniquely by /7(t) at a specific time t. But when the

signal 77(t) is available over atime interval from O to t, and the system is completely observable, the initial state X, can be

uniquely determined. If (2.14) is multiplied by eATtCT and integrated from O to t;, we get
{tjeATtCTCeA‘dt}xo = tjeATtCTfy(t)dt 33)
0 0
Let usdefineannx nmatrix M (0,t,) by
M(O,t,) = tj eM'CTCceMdt (3.4)
If M(O,t,) isnonsingular, XZ is determined uniquely from (3.3) as
X, =M™(0, tl)tjle’“cfy(t)dt (35)
0

From (3.5), we see that the non singularity of M (O,tl) for t, = O is a sufficient condition for the system (1.1) to be

completely observable. M (O, tl) isnon singular is proved in Katsuhisa et al (1988) page 52. This then leads to the following
theorem,
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Theorem 3.1Katsuhisa et a (1988).
A necessary and sufficient condition for the system (1.1) to be completely observable is one of the
following equivalent conditions:

[
1. M(O,t) = j e*'C"Ce™dt isnon singular.
0

2. The observability matrix defined as n x np matrix
[CT , ATCT , (AT)ZCT s (AT)n—lcT]

has rank n.
Proof:

For 1, this has been proved from the derivation of (2.7). For 2, it can be proved from 1 in asimilar way as
in Theorem 2.4.

We note that controllability and observability have alink between them as stated in the following duality theorem.
Theorem 3.2 (Duality) Stephen (1975)
The system

x = A(t)x(t) + B(t)u(t)
y=C(t)x(t)

iscompletely controllable if and only if the dual system
x = =AT (t)x(t) +CT (H)u(t)
y = BT ())x(1)

(3.6)

(3.7)

iscompletely observable.
MAIN RESULT .
The dual theorem leads us to the main result of this paper.
Theorem 4.1
The necessary condition for a controllable system

x = A(t)x(t) + B(t)u(t)
y =C(t)x(t)

to be observable isthat the n x n matrix A be skew-symmetric and matrices B and C be transpose of each other.
Proof:

Since the system (4.1) is controllable, the controllability gramian W(0, t1) defined by

(4.1)

4
W(O,t,) = j e BB e 'dt 4.2)
0
is non singular. From duality Theorem 3.2, if (4.1) is to be observable, then the observability gramian M (O, tl) defined by
[
M(O,t) = j eM'CTCeMdt 4.3)
0

must be non singular. By comparing (4.2) and (4.3), wesee thatif A" =—AandC =B (B=C"), thetwo equations
are the same. Since (4.2) isnon singular, (4.3) will also be non singular, and so the observability condition of (4.1) is assured.
A" =—A impliesthat A is skew-symmetric,and C =B", B =C" meansthat they are of transpose to each other.
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