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Abstract

The covariant and contravariant metric tensors extg to a homogeneous
spherical body rotating uniformly about a commomPaxis with constant angular
velocity is constructed. The constructed metric tensorghiis gravitational field have
seven non-zero distinct components.The Lagrangiaor fthis gravitational field is

constructed. It is used to derive Einstein’s plaagt equation of motion and photon
equation of motion in the vicinity of the rotatinpomogeneous spherical mass.

Introduction:

In recent articles [1-5], we introduced a uniquel g@nofound method for obtaining metric tensors aedce solutions to
gravitational field equations exterior and interiorall regular distributions of mass. The methaalds field equations with
only one unknown function satisfactorily comparatdeNewton’s gravitational scalar potential for thistribution under
consideration. This is profound because it putsstein’s geometrical theory of gravitation on thamsafooting with
Newton’s dynamical theory of gravitation. The detaration of the unknown function paves the waytfa derivation of all
other parameters for the field; same as the detation of the scalar potential in Newton’s theoaygs the way for all other
characteristics of the field such as force.

In this article, the metric tensors exterior to assive homogeneous spherical distribution of matsding uniformly about a
common axis with a constant angular velocity agtesyatically constructed. The mass distributioplésed in empty space
and hence the stress tensor is zero so the fielgtieg reduces to Einstein’s tensor equal to zero.

Covariant and Contravariant Metric Tensors
Consider a coordinate systenx (F,?,(Z) fixed to a static spherical body situated in emgpyace. Suppose the mass

distribution within the spherical body is homogemgand rotating with uniform angular velocity abautxed diameter. The
covariant metric tensor exterior to the sphericassndistribution is found to be given [5] as;

oo :1+C—22f(r,9) 1)
2 -1

gn:—[1+c—2f(r,0)} @)

O = 1" )

Oy =17 sin* @ (4)

g,, =0; otherwise (5)

wherer > R, the radius of the sphere(r, 9) is an arbitrary function determined by the rotgtimass distribution within
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the sphere and is a function of only the radisfadice and polar angle. Instructively, the metisor satisfies Einstein’s

field equations and the invariance of the line eaimby virtue of their construction [6]. An outsthng theoretical and
astrophysical consequence of the metric tensoratems (1) — (5) is that Einstein’s field equatiaenstructed using the
metric tensor has only one unknow(r, &) . A solution of these field equations gives an Expéxpression for the function

£(r,0)

. In approximate gravitational fields, the arliyréunction f (r, 8)is conveniently equated to the gravitational scalar
potential exterior to the homogeneous rotating spakemass distribution [1-6].
Now, consider a second coordinate syst)z{r(w, 0, ¢)) fixed to the spherical body and rotating uniforralyout a common

ZZ axis with angular velocitg as shown in fig. 1.
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Fig.1: Uniformly Rotating Spherical Body

Thus, the spherical body as well as the homogen@ags distribution within it is now rotating unifoly about a fixed
diameter. The following transformations betweentthe coordinate frames can be considered

T =t (6)

T =rcosat — @ sinut @)

@ =rsinat + 6 cost ®)

p=9 9)
The expression for the proper time in the statioie is given as

c’dr? :ngoodt_z_gll r 2_922d§2_933d§zz (10)
and by the invariance of proper time or line eletitiis related to that in the rotating frame by;

c’dr? =cd7? (11)

Thus by the expansion of the right hand side oftquo (11) using (10) and the transformations ¢6)9), the covariant
metric tensor exterior to the rotating sphericabsa obtained as

-1
oo :1+£2 f(r.0)-r?a?[@sinat +r cosut]’ -a?[r simt+8 co«sx]z[ i%f (r 9)} (12)
c c
-1
o, = Oy = °w[@sinat +r cosat] simt +w[r simt +6 cosx][ ﬁ%f(r 9)} coa  (13)
c

-1
Upz = 050 = 2r°w[Fsinat +r cosut]| cost-wr sint+86 cast][ +1C£2f(r 0)} st (14)

-1
gn:—rzsinzax—{1+0%f (r ,0)} cod et (15)
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-1
glz5921:%{—r2+{1+—22f(r,0)} }sin?wt (16)
c
2 -1
0., :—rzcoszax—{1+?f (r 6’)} sif at (17)
Oy =17 sin* @ (18)
9. =0; otherwise (19)

Remarkably, this metric tensor has seven non-zemgponents unlike the metric in [5]. Thus the ratatof the
homogeneous mass content introduces additionaliaffenal components. Also, the leading diagonalgments, equations
(12), (15) and (17) are dependent on the angletafion w

To construct the contravariant metric tensor fer gravitational field exterior to the rotating spheg”” we use [7]
w o cofactor of g, in¢
g

g (20)

where
gOO gOl g 02 g 03
g glO gll ng g 13 (21)
920 gzl g 22 g 23

930 g 31 g 32 g 33

Thus in this exterior gravitational field, equati®1) becomes;
90 9un 9, O
0
g= Oo 911 91 22)
92 921 9 O
0 0 0 g

or

900933(911922_915)_909 3(9 ¥ 229 8 go_g & §Q % 29 )2 (23)

Hence the contravariant metric tensor has thewiatlg components;

00 _ (911922 - 9122)

— (24)
=(9,)
901 = glo - (901922 — 00,9 12) (25)
=(9,)
goz = gzo - (gloglz - 0.0 02) (26)
=(9)
g” — (900922 - 9022) 27)
=(9.)
glz =g 21 _ (9009_12 ~ 909 02) (28)
=(9u)
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g% = (900911_ 9012)

=(9,) 29)
1
g33 -
O33 (30)
g”’ =0; otherwise (31)

where

2(9,) = 900 (01192,- 945 ) 908,799 )-9 49 8 59 & ) (2

Thus, the metric tensor in this gravitational fiblas seven non-zero distinct components.

2. Orbits in the Vicinity of a Rotating Homogeneous Spherical Mass
The Lagrangian in the space time exterior to atpphysical body is defined [8] as

1
=1 “q dx? dx’ )2 (33)
cl “”dr dr

Thus in the gravitational field of a rotating horeogous spherical mass, the Lagrangian, equatiQrbé&®mes

1
(g1 ) 20 G -2 )l |
1| T™ldr *dr )\dr % dr )\ dr "dr (34)

| . (dr)(de)__ (doy_ (dpy
92 dr )\ dr 92 dr Yss dr

T
Considering orbits in the equatorial plane of a bgeneous spherical mass, thefl,= E and thus the Lagrangian, equation

1
dt \? dt \( dr ar Y dp)
L==|~0u [Ej - 2901[5) [E) - gn(&) -9 33[d_fj J (35)

Substituting the explicit expressions for the comgrats of the covariant metric tensor in equatid) ¢8elds
1

1 —(W—rzwquz—a)zR:W‘l)t'z—Z(rZa)%sianwRW'lcow)_lfr’ 2
c +(rzsin2a»t—W‘1 coszax)r'2+r2{02

(34) reduces to:

Ol

(36)

where dot represents differentiation with respegiroper time and

W:1+%f(r,9), d=@sinat +r cosut , R=r simt+6 cost (37)
C

It is well known [8] that the Lagrangia{ﬂ:D, with 0=1 for time like orbits and’= 0for null orbits. Setting
L =0 in equation (36) and squaring both sides yields;
. . _ -1,
¢’ [P= —(W -r’we’-wRW” l)t 2— 2(r w W sinat + wRW lcoswt) r
. (38)
+ (r2 sin®at -W™ co§a1)r‘ 241 p°
The shapes of orbits (as a function of the azimthgle) are important in most applications of gaheelativity [8]. Hence,

it is instructive to transform equation (38) into @quation in terms of the azimuthal angleNow, consider the following
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. _ 1
transformation, withr =r (¢7) and U(¢) =—— then
r

(¢)

r=g— o o p=_d (39)
de 1+r? do
but
dr _dr du d ., du
—_— = or —=-U"— (40)
dg dudg dg de
and thus
F=-— | % 41)
1+u® do
Now, imposing the transformations on equation @8) simplifying yields
1 [du jz 2(u‘2w2¢ sinat + wRW™ coswt)_l ( 1 ) du
|| + _
(1+u®)*\ dg (u'2 sinzax—W‘lcoszax) 1+u? Jde
(42)
(W-u?afe? - R t‘2 c? [ o
(u‘2 sin® et —W™* co§ax) (u‘2 sirfat -W™* coéwt) B
For time like orbits /=1 and hence equation (42) reduces to;
1 [du jz 2(uew® sinat + wRW™ coswc)_l ( 1 j du
- | == 4 -
@+u®)’\ de (u‘2 sinat ~W™* co§wt) 1+u? ) dg
(43)
(W-u?ewro? - w’RW ) t‘2 2 o

(u‘2 sin®at -W™ cog a)t) (u‘2 sifat -W™* coéax)
This is the planetary equation of motion in thenity of the rotating homogeneous spherical massan be solved to obtain

the perihelion precision of planetary orbits irstgravitational field. Since light rays travel oullrgeodesics, we have=0
and equation (42) becomes

1 (dujz 2(u‘2w2d>sina1+a)RVV‘lcow)_l( 1 jdu (W—u'zwzdbz—sz‘W‘l)t_z .
= | == + _ - =
1+u?)?\ dg (usin® at -W* cog t) 1+u?)de (u? sifat-W™ codut)

(44)
Equation (44) is the photon equation of motiorhia vicinity of a rotating massive homogeneous sphkbody.

3. Conclusion
The consequences of the results in this article are
i. With the construction of the metric tensor, gratdtaal field equations for this field become eminérhe field
equations are constructed via the coefficientdfaf@connection, Riemann-Christoffel tensor anddrtensor.
The obtained field equations have only one unknaihith can be determined completely. Thus by taking
consideration physical and astrophysical propedighe massive body, the unknown function candreveniently
defined.
ii. Other gravitational phenomena can now be completeigied. These include motion of test particlgsgvitational
length contraction, gravitational time dilationagitational spectral shift of light, geodetic ddioa just to name a
few.
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