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Abstract

Semigroups whose congruences form a chain are often termed 4-semigroups. The
commutative 4-semigroups were determined by Schein and Tamura. A natural
generalization of commutativity is permutativity: a semigroup is permutative if it
satisfies a non-identity permutational identity. We completely determine the permutative
A-semigroups. It turns out that there are only six noncommutative examples, each of
which has at mogt three elements.
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1.0  Introduction
A semigroup is callegermutative if it satisfies an identityX;, X,,..., X; = X4y, X;(2ys- -+ X;(n) » fOr SOMe non-

identity permutation of{1,2,...,Nn}. A A-semigroups is one whose congruences form a chdine commutativeh-

semigroups were completely determined by Schein[flland Tamura [3]. In conjunction with theirstdt, stated below as
Result 1.1, our main theorem completely determihegermutativé\-semigroups.

Theorem 1.1.

A semigroups is a permutativé&-semigroup if and only if it satisfies one of tleléwing conditions.
Q) Sis a commutativé-semigroup.
(i) Sis isomorphic to eitheR or R®, whereR is a two-element right zero semigroup.

(iii) S is isomorphic to the semigroup = {0, e, &, obtained by adjoining to a null semigroup &, an idempotent
elemente that is both a right identity and a left annitolafor Z.

(iv) Sis isomorphic to the dual of a semigroup of tyipedr (ii).

Let R" denote the semigroup of positive real numbers uadédition and le) denote the Rees quotient semigroup by the

ideal | =[1, ). Similarly, letR denote the Rees quotient semigroup by the ideal(l, ©). A subsemigrouis of Q or R
is O-unitaryif X, X+ Yy G,x+ yUl togetherimplyy[1G.

Result 1.1[1], [2], [3]
A semigroup S is a commutativesemigroup if and only if it satisfies one of thikofeing conditions:

() Sis isomorphic to subgroup of a quasicygligroup @ is a prime).

(i) Sis a cyclic nilpotent semigroup.

(iii) S is an infinite 0-unitary subsemigroup of eiteor R.

(iv) Sis obtained from a group of typg by adjoining a zero element.

(V) Sis obtained from a semigroup of typs 6r (ii) by adjoining an identity element.

As may also be easily verified directly, it folloirem this result that a semilattiGis aA-semigroup if and only if
|[§ < 2. Several authors have considefedemigroups satisfying various generalizations ahmutativity, for instance in
[4], [5], [6], [7], [8]- The outline of the proadf Theorem 1.1 is as follows.
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A key role is played by thérchimedean semigroupshose semigroup$ with the property that, for arbitrary
elementsa, b S, there are positive integersandj such thata' [ SbS and b! 0SaS. In [9], it is proved that every
permutative semigroup is a semilattice of Archinsdsemigroups, that is,Rutchasemigroup [10]. In conjunction with
the observation above, on semilattices, it folldhet a permutativé-semigroup is either Archimedean or is a chairvaf t
Archimedean semigroups. In the description of dbmmutativeA-semigroups, those of types (i) - (iii) fall in thermer
category, i) and ¢) in [10].

A semigroupSis nil if it has a zero element and for eaafi] S,a" = 0 for some positive intege, in particular,S
is nilpotentif S'= {0} for some positive integen. Clearly, every nil semigroup is Archimedean.

A second key role is played by theedial semigroupghose that satisfy the permutational idengtyxyb= ayxt.
This is evident from the following.

Result 1.2(Theorem 1 of [1])
For any permutative semigroup S, there is a pasititeger k such that, for all, v [l S* and all a,bdsS, we

have uabv = ubav. In particular, S* is medial.

A semigroupS is called aridempotent semigrouipit satisfies the conditiol®® = S From Result 1.2, it is obvious
that every permutative idempotent semigroup is aledi

In Section 2, a detailed study of the permutativehkmedean case reveals that any shkaemigroup is medial. An
important step is a proof that every permutativeghdmedean semigroup without idempotent elementahasn-trivial group
homomorphic image. It is then shown teaerypermutativeA-semigroup is medial.

In Section 3 we first prove that every mediall A-semigroup is actually commutative. This completies
classification in the Archimedean case. In the Aothimedean case, we extend some techniques anltsre$ Trotter [17]
on exponential semigroups, in order to complete gleof of Theorem 1.1. A semigroup éxponentialif it satisfies

(xy)" = x"y" for all positive integers. It is easily verified that every medial semignds exponential.

Other papers on the topic Afsemigroups are by Bonzini and Cherubini [11], vaedermined all finite Putché-
semigroups, and by Tamura [12], who describedratefinverseA-semigroups (and some related infinite ones).

2.0 Generalities omA-semigroups

We will need the following properties aéfsemigroups. In addition, we will make use of Re$LL, for instance its
description of thé\-semigroups that are abelian groups.

Result 2.1]3]

Every homomorphic image offasemigroup is also A-semigroup.

Since with every ideal of a semigroup there is eissed its Rees congruence, it is obvious thaidbals of anyA-
semigroup are totally ordered. For nil semigrotifgsconverse holds.

Result 2.2(Theorem 1.56 dfL3])

Let S be a nil semigroup. The following are equinél

() S is aAA-semigroup;
(i) The ideals of S are totally ordered;
(iii) The principal ideals of S are totally ordered.

In that case, each congruence on S is the Reesweamze corresponding to the ideal consisting ofdbegruence
class of 0.

An ideal A of a semigrousis said to baelensein Sif the equality relation o8 is the only congruence @whose
restriction toA is the equality relation oA. Observe that every nontrivial ideal ofAasemigroupS is dense, since any
congruence o whose restriction to such an idéels the equality relation cannot contain the Rem¥jouence associated
with A and therefore must be contained in it instead.
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Result 2.3[4], (Theorem 1.61 of [13])

A non-trivial band is a\-semigroup if and only if it is isomorphic to eitferor R or R, where R is a two-element
right zero semigroup, or L or'Lor L°, where L is a two-element left zero semigroupFowhere is a two-element
semilattice.

As every semigroup is a semilattice of semilattimecomposable semi-groups, Result 2.2 and 2.3yithglt aA-
semigroup is either semilattice indecomposable sgrailattice of two semilattice indecomposable sgoips.

Result 2.4(Theorem 1.57 of [13])
If a A-semigroup S is a semilattice of a nil semigroypr&l an ideal $of S then |$= 1.

Result 2.5[3]
If a semigroup S contains a proper ideal | and i§ & A-semigroup then neither S nor | has a non-triviabgp
homomorphic image.

Result 2.6(Corollary 1.3 of [13])

If a A-semigroup S is an ideal extension of a rectanggtaup K by a semigroup with zero then K is eithgreup
or a left zero semigroup or a right zero semigroup.

We note that, in cas® = K, Sis either a group or a right zero semigroup cefadero semigroup. K is a proper
ideal ofSthen (using also Result 2.8)is either a right zero semigroup or a left zenmigeoup.

Result 2.7(Lemma 1.3 of [1])
No A-semigroup can contain an ideal that is itself aaablextension of a non-trivial right (or left) zesemigroup
by a non-trivial nil semigroup that is finite cyli

Proof.
(The following argument is significantly simplerattn that in the cited paper). SupposeAkgemigroupS contains
as an ideal an extension of the right zero semmmi®wy the nontrivial cyclic nil semigroup, generated by. Then

A-R={a d,..., &%, for somen> 1, wherea" = zOR.

Let p denote the congruence @hgenerated bya &). SinceS is a A-semigroup,p must contain the Rees
congruence modulo the ideRl Supposer [1R,r # z. The (r, z) J o and so there is a sequence of elementary tramsitio
leading fromr to z [14]. The first such transition has the form=sat — sa’t = r,orr= sd - sat= r,, where

s,t0S" and we may assumé # I, so thata [JR andat is therefore a power od. Now sincer = r? either
r =(rs)(at) or r =(rsa)(at); in either caser [JRa Since z=za, z[ORa also, that is,R= Ra But then, by

iteration, R=Ra" ={z} . HenceR cannot be non-trivial.

3.0 Every permutative A-semigroup is medial

We first consider Archimedean permutative semigsoirpgeneral. The Archimedean semigroups contgiain
least one idempotent element are characterizediSh [Namely, a semigroup is Archimedean and costan idempotent
element if and only if it is an ideal extensionaosimple semigroup containing an idempotent elerbgra nil semigroup.
As a simple semigroup satisfiesS’ = S, then by Result 2.2, every simple permutative geonip is medial and thus, by [16],
it is a rectangular abelian group (a direct prodafch left zero semigroup, a right zero semigrond an abelian group).
Thus we have the following result.

Theorem 3.1

Every permutative Archimedean semigroup S contgiaineast one idempotent element is an ideal sidarof a
rectangular abelian group by a nil semigroup.
A subsetA of a semigrous is called a left (right) unitary subset 8f A subsetA of a semigrous is called a

reflexive subset o8if abl] A implies bald A for everya,bS.
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Lemma 3.2
If a is an arbitrary element of a permutative semig S then

S, ={xOs: a'xa' =a" for some positive integers i, j k
is the smallest reflexive unitary subsemigroup tif§ contains a

Proof.

Let She a permutative semigroup. Then there is a posititegerk such thatuabv = ubav for everyu,v ] sk
and everya,bJS. Letabe an arbitrary element & It is clear that[JS,. To show thatS, is a subsemigroup &
let X, yUS, be arbitrary elements. Thea xa' =a" and a™ya" =a' for some positive integelis J,hymn,t. we
can suppose thatn = K. Then
a™ =a'xa'a™ya" =a'xya"™".
and soX, YIS, . To show tha8, is left unitary, assum&, Xyl S, for someX, yIS. Then a'xa' =a" and
amya" =a' for some positive integefis j,h,m,n,t. We can suppose that > j andi,n>=k. Then
a" =a'a™ya’ =a'xa'a™ya" =a'xa'a™ya" =a""™ ya".

Hence YIS, We can prove, in a similar way, that, Xy[lS,. Thus S, is an unitary subsemigroup & S, is
reflexive, because it is unitary and

(xy)® =x(yX)?y = xy*x*y = xy(yX)xy

holds in S If Bis a unitary subsemigroup 8fsuch thata[lB then, for an arbitrary elementJ S, , there are positive

h+m-j

integersi, j,K such thata'xa' =a* 0B.. Thenx[B so S, UB.

The following theorem extends Lemma 11 of [3] arftedrem 9.11 of [13]. There are also analogues ssch
Theorem 1.2 of [17].

Theorem 3.3
Every permutative Archimedean semigroup withoumigetent element has a non-trivial group homomorphic
image.

Proof

Let S be a permutative Archimedean semigroup withoumnjpletent element. AssurnSa # S for someallS.
Then the principal congruend@Sa of Sdefined by the reflexive unitary subsemigrdips a group congruence &3] and
so the factor semigroufs/ PSa is a non-trivial group homomorphic imagef SupposeS, =S for all al1S. Then, for

anyallS, S, =S andsoal]S,. Then there are positive integdrsj, h such that we havéa?)'a(a?)’ = (a*)",

that is, a”*2/*t = g*" contradicting the assumption tt&has no idempotent element.

Next, we deal with permutative, Archimedeasemigroups. First of all, we prove these lemnhas will be used
in the proof of Proposition 3.7 below.

Lemma 3.4

Every nilpotentA-semigroup is finite cyclic. Every non-nilpotent] permutative A-semigroup is idempotent.
Hence any permutative ni-semigroup is medial.

Proof
First, suppose th&is a nonidempotent ni-semigroup. Lea,bS - S?. Since the ideals Gare totally

ordered, we may assume without loss of generdliay 8'bS' 0 S'aS'. If b# a thenb = sat where eithesortis inS,
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contradictingb 0 S?. Henceb = aand S— S? ={a} . Letk > 1 be an arbitrary integer. ¢ S*™* — S* then
c=¢C,G,...,G_, forsomec, US - S?. Hencec =a“™. If Sis nilpotent, thenS' ={0} for some least positive
integerj and, by the aboveS ={a, as,..., al =0}. clearly such a semigroup is medial.

If Sis nonidempotent and nil, but non-nilpotent, tHBh #{0} forall j=1. LetN be any positive integer such
thata" =0. LetbhOS™ —{0}, b=hb,....h, say. Sincea] S'b;S" unlessa=h for each. By the total
ordering on ideals o8, for each, there are elements , t; U S' such thath = sat,. Now, for some index
i <N,t;s,, 0S™ —{0} for everym >0, for otherwise, the product
b=(sat)(s,at)...(saty)...(Syaty)...(Syaty) involves the powea". Similarly, an element; S, ,, has the same
property for some indexy = 2N .

If Sis also permutative, then there exiktssuch thatS‘ is medial. Therefore iN =K, all the terms between

t;s,, and tjsj+1 in the product fotb may be commuted, yielding a tera, contradictingb# 0. Thus the second
statement in the lemma is proven. As noted ini®ecine, every idempotent, permutative semigroupeslial.

Lemma 3.5
Let S be a permutative semigroup with a dense iBdhht is a right zero semigroup. If R is non&ivthen S/R is
nilpotent.

Proof

SupposesS satisfies the identityX, X,..., X, = X1y, % (2)»--+ %), fOr somen > 1, whereo is a non-trivial
(and
substituting arbitrarily for any other variablesglgsr = s. Leti be least such thar(j) = j for i<j . Clearlyi >2. Let
r OR and substituteX_, =r. Thenrx..Xx =rwx.X, for everyr [JR, wherew is a non-empty word i§X,%,..,X_}. Itis
easy to see thay={(a ) OSx S:(O ] B ra= r is a congruences ddsuch that the restrictiony |, of /7 to R equals
id;. AsRis a dense ideal & we haver7 =id. As (X,..,X,WX,.., X)[17, we get thatX,..,X =W, .., X is an identity

permutation. Theng(n) =n since, otherwise, if, s are distinct members &, substitutingr =x, and S= X (n)

satisfied inS. Now by choosing for any one of the variablesvian element oR, it follows that X .. %, L for X,..,X LIS,
Thus S™[OR; equivalently,(S'/R™={q.

Lemma 3.6

No permutativé\-semigroup can be an ideal extension of a nontrikgit (or left) zero semigroup by a non-trivial
nil semigroup.

Proof

Suppose such a semigroBgexists, with non-trivial right zero ide&®. Then, as observed in Section oRes a
dense ideal 06 By the previous Lemm&/Ris nilpotent. Sinc&/Ris also aA-semigroup, it is finite cyclic. Then Result
2.7 applies.

Proposition 3.7
Every permutative, Archimede&rsemigroup is either
(a) simple, whence a group or a left or right zero ggoup, or
(b) nil. In any case, every such semigroup is medial.

Proof
Let Sbhe such a semigroup. %fis simple therSis idempotent and so is medial, thus a rectangutaup [16] and so
is as described, by the comments following Result 2
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If Sis not simple then, by Theorem 3.3 and Result 2dintains an idempotent element. By Theorem 3ebuR
2.7 and the remarks that follow the latt8ris an ideal extension of a right or left zero sgnmiip K by a non-trivial nil
semigroup. By Lemma 3.%J = 1, that isSis a non-trivial nil semigroup. The mediality ndeflows by Lemma 3.6.
Finally, we may consider the general permutativseca

Theorem 3.8
Every permutativé-semigroup is medial.

Proof.
Let S be such a semigroup. The Archimedean case isr@dJgy the preceding result. We have seen that the

alternative case is wheis a semilattice of two Archimedean semigrogpand $ with §§ [0S,. By Result 2.3S’ and
so0 S is an Archimedea-semigroup. It is clear th&, is permutative. The®, is either a group or a two-element right or
left zero semigroup (see also Result 2.6). Inthaike casesS” NS #0 and § 0S. As the idealss, and S of S are
comparable, we hav& =S Then, by Result 2.3,is a medial semigroup.

4.0 Medial A-semigroups

We shall refine the following partial descriptiari the medialA-semigroups summarized by the first author,
deducible from the results of Trotter's Theoren¥ 3.5, 3.6 of [17].

Result 4.1(Theorem 9.20 of [8])
A medial semigroup is A-semigroup if and only if it satisfies one of thikofwing conditions.
Q) S is a\-group (necessarily abelian), or such a group witheao adjoined.
(i) S is a nil\-semigroup.
(iii) S is isomorphic to either R of, Rvhere R is a two-element right zero semigroup.
(iv) S is isomorphic to the dual of a semigrofitype(iii).

v) S=NU{¢g, wheree® =¢ N is anil semigroupandeN, NeO N
Trotter [17] called anyA-semigroup constructed in the fashion @f & T1 semigroup (In our earlier notation,
N=5{¢=5)
We shall first show that every medial, AHsemigroup is commutative; and then that every aledil A-semigroup

is either commutative or is isomorphic to the seoug Z of Theorem 1.1 or its dual. In view of Result,ltie proof of
Theorem 1.1 is then complete.

A semigroup ideft commutativéf it satisfies the identitgbx = bax right commutativity is defined dually. Clearly
all such semigroups are medial.

Proposition 4.2
If Sis a left or right commutative, ditsemigroup then it is commutative.

Proof

We need only consider the identigbx=bax. Let p={(ah0Sx S as bE&IsOS}. Itis well known thap
is congruence o8, from the identity it follows tha®pis commutative.
By Result 2.4pis the Rees ideal congruence modulo, the ideal00 , which is the left annihilator & Thus if

allS, either aS=0 or ap={a}. now let a,bdS,a#b. Ifa,b,ab I, then sinceS/ p is commutative,
ab=ba. If a,b0I thenab =ba =0.

If a,bd]l then, since the principal ideals 8fare totally ordered, without loss of generality= xby for some
x, yOS'. sinceall, x, yU1 . By the first case above, b, ycommute. Hencab = ba

Without loss of generality, the remaining case ieve a[l|,b[01. As above,a = xby for somex, yJS*. If
yO1, then xby=Dbxy. Thus we may assume that eitler bx or a = xb for some XUUS. If XU then by the

previous paragrapbx = xband saab = ba Thus we may assum¢[] | . Now we may similarly writex = le or X:XIb
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for someX, (0S. If x 01 then, again similarlybx = x,b and soa =b*x, or a=xb*, whenceab =ba If x 01,
continue this process by writing, =bX, or X =xb. By induction, wither somex, J | and thenab = ba, or for alli
there exists; such thata= b”l)g or a:)gb”l. ButSis nil, so it follows that = 0, completing the proof.

Theorem 4.3
If S is a medial, nih-semigroup, then S is commutative.

Proof
Again, letp be the congruencf{ @ b) [0 Sx S ass h$l s[OS}. From the medial identity it is clear tiafp is

right commutative. Since it is again a Ailsemigroup, it is commutative, by the previous psifions. Letl, =0p. Let
A be the dual congruence, so ti%# is also commutative. Let =0A. As in the proof of the proposition, for each
allS, eitherap =1 or ap ={a}, and dually.

Since the ideals d are totally ordered, without loss of generality (I 1 ;. Let a,b,0S. If a,b0l then
precisely as in the third and fourth paragraphthefproof of the previous propositicsty) = ba Otherwise, without loss of

generality,al]l , soab=0. Butalsoallly, soba =0.
We now turn to T1 semigroups.

Result 4.1(Theorem 1.58 of [13),emma 3.3 of [17]
Let S= N [J{€} be any T1 semigroup. Then every ideal of N is atsileal of S and so N is alsa\asemigroup.

Theorem 4.4
Let S= N [J{€} be a mediall'1 semigroup. Then N is a commutatlveemigroup and S satisfies one of the

following conditions.

(i) e acts as an identity element for N and S itsatbmmutative.

(ii) e acts as a right identity and a left annihilator N and S is isomorphic to the semigroup Z inoFam 2.1 (iii).
(iii) the dual of the previous case.

Proof
ThatN is commutative is immediate from Result 4.1 anddrkm 4.4.

Now suppose thad is any T1 semigroup for whicN is commutative. We show first that for a@f] N, either
ec=a or ea=0. (The dual statement obviously also holds.) Resl shows that sincéN 'aN?! is an ideal oN, it is

also an ideal 08, whence it containea Hence, ifee Z a, then ec = at for somet [N . Thenea- eat=eat" for
eachn and, sincet 1 N,ea=0.

Next suppose thata = afor some non-zer@JN. Let bOON . Eitherb = axora = bx for somexdS". In

the former caseeb=eaxcax=Db: in the latter case, supposk = 0: thene = ebx =0, a contradiction, so that agah = h
Hencee is either a left identity fof or a left annihilator foN. Clearly the dual statement also holds.

Conclusion
In this paper, we have show thahifis nonzero, thea cannot be both a left and a right annihilatorNorFor in that

event, givenal1N —{0}, S'aS 0S'eS, so a = set,for somes,t 0 S*. Bothsandt cannot belong td\, for thense = et
= 0. But otherwise, eitheat = eaor a = ag contradicting the assumptior is either an identity fo§, or is a right identity
for Sand a left annihilator foN, or is a left identity folSand a right annihilator fox. If ab=(agb=a(eh =0, thenN is a
null semigroup. But every subsetMdthat contains 0 is an ideal, $dl|< 2. When N ={0}, e actually acts as an identity.

OtherwiseN = {a, 0}, say, whereaae = a, ee = eand all other products are 0.
The concrete results obtained raise the questioether Trotter’s results [17] on exponentlakemigroups can
similarly be strengthened. In particular, is iter(c.f. Theorem 5) that every nil, exponenfiasdemigroup is commutative?
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