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Abstract 

 
Semigroups whose congruences form a chain are often termed ∆∆∆∆-semigroups.  The 

commutative ∆∆∆∆-semigroups were determined by Schein and Tamura.  A natural 
generalization of commutativity is permutativity: a semigroup is permutative if it 
satisfies a non-identity permutational identity.  We completely determine the permutative 
∆∆∆∆-semigroups.  It turns out that there are only six noncommutative examples, each of 
which has at most three elements. 

 

Keywords: Permutative ∆-semigroups., non-identity, homomorphic image, 
                    abelian groups. 
AMS Mathematics Subject Classification (2000): 20MXX . 
 

1.0 Introduction 
A semigroup is called permutative if it satisfies an identity 1 2 (1), , , ,nx x x xσ=K (2) ( ), , nx xσ σK , for some non-

identity permutation of }.,,2,1{ nK  A ∆-semigroups is one whose congruences form a chain.  The commutative ∆-

semigroups were completely determined by Schein [1], [2] and Tamura [3].  In conjunction with their result, stated below as 
Result 1.1, our main theorem completely determines the permutative ∆-semigroups. 
 
Theorem 1.1. 

A semigroup � is a permutative ∆-semigroup if and only if it satisfies one of the following conditions. 
 
(i) S is a commutative ∆-semigroup. 
(ii ) S is isomorphic to either � or �0, where � is a two-element right zero semigroup. 
(iii ) S is isomorphic to the semigroup � = {0, e, a}, obtained by adjoining to a null semigroup {0, a} an idempotent 

element e that is both a right identity and a left annihilator for �. 
(iv) S is isomorphic to the dual of a semigroup of type (ii ) or (iii ). 
Let R+ denote the semigroup of positive real numbers under addition and let � denote the Rees quotient semigroup by the 
ideal ).,1[ ∞=I  Similarly, let � denote the Rees quotient semigroup by the ideal ).,1( ∞=I  A subsemigroup G of � or � 

is 0-unitary if IyxGyxx ∉+∈+ ,,  together imply Gy∈ . 

 
Result 1.1 [1], [2], [3]  

A semigroup S is a commutative ∆-semigroup if and only if it satisfies one of the following conditions: 
(i) S is isomorphic to subgroup of a quasicyclic p-group (p is a prime). 
(ii ) S is a cyclic nilpotent semigroup. 
(iii ) S is an infinite 0-unitary subsemigroup of either � or R. 
(iv) S is obtained from a group of type (i) by adjoining a zero element. 
(v) S is obtained from a semigroup of type (ii ) or (iii ) by adjoining an identity element. 

As may also be easily verified directly, it follows from this result that a semilattice S is a ∆-semigroup if and only if 
|S| ≤ 2.  Several authors have considered ∆-semigroups satisfying various generalizations of commutativity, for instance in 
[4], [5], [6], [7], [8].  The outline of the proof of Theorem 1.1 is as follows. 
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A key role is played by the Archimedean semigroups: those semigroups S with the property that, for arbitrary 

elements ,, Sba ∈ there are positive integers i and j such that SbSa i ∈  and SaSb j ∈ .  In [9], it is proved that every 

permutative semigroup is a semilattice of Archimedean semigroups, that is, a Putcha semigroup [10].  In conjunction with 
the observation above, on semilattices, it follows that a permutative ∆-semigroup is either Archimedean or is a chain of two 
Archimedean semigroups.  In the description of the commutative ∆-semigroups, those of types (i) - (iii) fall in the former 
category, (iv) and (v) in [10]. 

A semigroup S is nil if it has a zero element and for each 0, =∈ naSa  for some positive integer n; in particular, S 

is nilpotent if Sn
 = {0} for some positive integer n.  Clearly, every nil semigroup is Archimedean. 

A second key role is played by the medial semigroups: those that satisfy the permutational identity axyb ayxb= .  

This is evident from the following. 
 
Result 1.2 (Theorem 1 of [1]) 

For any permutative semigroup S, there is a positive integer k such that, for all kSvu ∈,  and all Sba ∈, , we 

have ubavuabv = .  In particular, kS  is medial. 

A semigroup S is called an idempotent semigroup if it satisfies the condition S2 = S.  From Result 1.2, it is obvious 
that every permutative idempotent semigroup is medial. 

In Section 2, a detailed study of the permutative Archimedean case reveals that any such ∆-semigroup is medial.  An 
important step is a proof that every permutative, Archimedean semigroup without idempotent element has a non-trivial group 
homomorphic image.  It is then shown that every permutative ∆-semigroup is medial. 

In Section 3 we first prove that every medial, nil ∆-semigroup is actually commutative.  This completes the 
classification in the Archimedean case. In the non-Archimedean case, we extend some techniques and results of Trotter [17] 
on exponential semigroups, in order to complete the proof of Theorem 1.1.  A semigroup is exponential if it satisfies 

nnn yxxy =)(  for all positive integers n.  It is easily verified that every medial semigroup is exponential.   

Other papers on the topic of ∆-semigroups are by Bonzini and Cherubini [11], who determined all finite Putcha ∆-
semigroups, and by Tamura [12], who described all finite inverse ∆-semigroups (and some related infinite ones). 
 
2.0 Generalities on ∆∆∆∆-semigroups 
 

We will need the following properties of ∆-semigroups.  In addition, we will make use of Result 1.1, for instance its 
description of the ∆-semigroups that are abelian groups. 
 
Result 2.1 [3] 

Every homomorphic image of a ∆-semigroup is also a ∆-semigroup. 
Since with every ideal of a semigroup there is associated its Rees congruence, it is obvious that the ideals of any ∆-

semigroup are totally ordered.  For nil semigroups the converse holds. 
 
Result 2.2 (Theorem 1.56 of [13]) 

Let S be a nil semigroup. The following are equivalent: 
(i) S is a ∆-semigroup; 
(ii ) The ideals of S are totally ordered; 
(iii ) The principal ideals of S are totally ordered. 

In that case, each congruence on S is the Rees congruence corresponding to the ideal consisting of the congruence 
class of 0. 

An ideal A of  a semigroup S is said to be dense in S if the equality relation on S is the only congruence on S whose 
restriction to A is the equality relation on A.  Observe that every nontrivial ideal of a ∆-semigroup S is dense, since any 
congruence on S whose restriction to such an ideal A is the equality relation cannot contain the Rees congruence associated 
with A and therefore must be contained in it instead. 
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Result 2.3 [4], (Theorem 1.61 of [13]) 
A non-trivial band is a ∆-semigroup if and only if it is isomorphic to either R or R1 or R0, where R is a two-element 

right zero semigroup, or L or L1 or L0, where L is a two-element left zero semigroup, or F, where is a two-element 
semilattice. 

As every semigroup is a semilattice of semilattice indecomposable semi-groups, Result 2.2 and 2.3 imply that a ∆-
semigroup is either semilattice indecomposable or a semilattice of two semilattice indecomposable semigroups. 
 
Result 2.4 (Theorem 1.57 of [13]) 

If a ∆-semigroup S is a semilattice of a nil semigroup S1 and an ideal S0 of S then |S1| = 1. 
 
Result 2.5 [3]  

If a semigroup S contains a proper ideal I and if S is a ∆-semigroup then neither S nor I has a non-trivial group 
homomorphic image. 
 
Result 2.6 (Corollary 1.3 of [13])   

If a ∆-semigroup S is an ideal extension of a rectangular group K by a semigroup with zero then K is either a group 
or a left zero semigroup or a right zero semigroup. 

We note that, in case S = K, S is either a group or a right zero semigroup or a left zero semigroup.  If K is a proper 
ideal of S then (using also Result 2.5) K is either a right zero semigroup or a left zero semigroup. 
 
Result 2.7 (Lemma 1.3 of [1]) 

No ∆-semigroup can contain an ideal that is itself an ideal extension of a non-trivial right (or left) zero semigroup 
by a non-trivial nil semigroup that is finite cyclic. 

 
Proof. 

(The following argument is significantly simpler than that in the cited paper).  Suppose the ∆-semigroup S contains 
as an ideal an extension of the right zero semigroup R by the nontrivial cyclic nil semigroup A, generated by a.  Then

2 1{ , , , }nA R a a a−− = K , for some n > 1, where Rzan ∈= . 

 Let ρ denote the congruence on S generated by (a, a2).  Since S is a ∆-semigroup, ρ must contain the Rees 
congruence modulo the ideal R. Suppose ., zrRr ≠∈   The ρ∈),( zr  and so there is a sequence of elementary transitions 

leading from r to z [14]. The first such transition has the form 1
2 rtsasatr =→= , or 1rsatsar t =→= , where 

1, Sts ∈  and we may assume rr ≠1 , so that a R∉  and at is therefore a power of a.  Now since r = r 2, either 

))(( atrsr =  or ))(( atrsar = ; in either case .Rar ∈  Since Razzaz ∈= ,  also, that is, .R Ra=   But then, by 

iteration, }{ zRaR n == .  Hence R cannot be non-trivial. 

 
3.0 Every permutative ∆∆∆∆-semigroup is medial 
 

We first consider Archimedean permutative semigroups in general.  The Archimedean semigroups containing at 
least one idempotent element are characterized in [15].  Namely, a semigroup is Archimedean and contains an idempotent 
element if and only if it is an ideal extension of a simple semigroup containing an idempotent element by a nil semigroup.   
As a simple semigroup S satisfies S2 = S, then by Result 2.2, every simple permutative semigroup is medial and thus, by [16], 
it is a rectangular abelian group (a direct product of a left zero semigroup, a right zero semigroup and an abelian group).  
Thus we have the following result. 
 
Theorem 3.1 
 

Every permutative Archimedean semigroup S containing at least one idempotent element is an ideal extension of a 
rectangular abelian group by a nil semigroup. 
 A subset A of a semigroup S is called a left (right) unitary subset of S.  A subset A of a semigroup S is called a 
reflexive subset of S if  Aab∈  implies Aba∈  for every Sba ∈, . 
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Lemma 3.2 
If a is an arbitrary element of a permutative semigroup S then 

  hji
a axaaSxS =∈= :{  for some positive integers i, j, k} 

is the smallest reflexive unitary subsemigroup of S that contains a. 
 
Proof. 

Let S be  a permutative semigroup. Then there is a positive integer k such that ubavuabv =  for every kSvu ∈,  

and every Sba ∈, .  Let a be an arbitrary element of S.  It is clear that aSa∈ .  To show that aS  is a subsemigroup of S, 

let aSyx ∈,  be arbitrary elements.  Then hji axaa =  and tnm ayaa =  for some positive integers tnmhji ,,,,, .  We 

can suppose that kni ≥, . Then 
nmjinmjith xyaayaaxaaa +++ == . 

and so aSyx ∈, .  To show that Sa  is left unitary, assume aSxyx ∈,  for some Syx ∈, .  Then hji axaa =  and 
tnm ayaa =  for some positive integers tnmhji ,,,,, .  We can suppose that jm≥  and kni ≥, .  Then 

.)( njmhnjmjinmjinmiti yaayaaxaayaaxaaxyaaaa −+−+ ====  

Hence aSy∈   We can prove, in a similar way, that ., aSxyy ∈  Thus aS  is an unitary subsemigroup of S.  aS  is 

reflexive, because it is unitary and 

xyyxxyyxxyyyxxxy )()()( 2223 ===  

holds in S.  If B is a unitary subsemigroup of S such that Ba∈  then, for an arbitrary element aSx∈ , there are positive 

integers kji ,,  such that .Baxaa kji ∈= .  Then Bx∈  so .BSa ⊆  

The following theorem extends Lemma 11 of [3] and Theorem 9.11 of [13].  There are also analogues such as 
Theorem 1.2 of [17]. 
 
Theorem 3.3 

Every permutative Archimedean semigroup without idempotent element has a non-trivial group homomorphic 
image. 
 
Proof 

Let S be a permutative Archimedean semigroup without idempotent element.  Assume SSa ≠  for some Sa∈ .  

Then the principal congruence 
asP  of S defined by the reflexive unitary subsemigroup Sa is a group congruence on S [3] and 

so the factor semigroup 
aSPS /  is a non-trivial group homomorphic image of S.  Suppose SSa =  for all Sa∈ .  Then, for 

any Sa∈ , SS
a

=2  and so 2a
Sa∈ .  Then there are positive integers hji ,,  such that we have hji aaaa )()()( 222 = , 

that is, hji aa 2122 =++  contradicting the assumption that S has no idempotent element. 
 Next, we deal with permutative, Archimedean ∆-semigroups.  First of all, we prove these lemmas that will be used 
in the proof of Proposition 3.7 below. 
 
Lemma 3.4 
 

Every nilpotent ∆-semigroup is finite cyclic.  Every non-nilpotent, nil permutative ∆-semigroup is idempotent.  
Hence any permutative nil ∆-semigroup is medial. 
 
Proof 

First, suppose that S is a nonidempotent nil ∆-semigroup.  Let 2, SSba −∈ .  Since the ideals of S are totally 

ordered, we may assume without loss of generality that 1111 aSSbSS ⊆ .  If ab ≠  then b = sat, where either s or t is in S,  
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contradicting 2Sb∉ .  Hence b = a and }{2 aSS =− .  Let k > 1 be an arbitrary integer.  If kk SSc −∈ −1  then 

1 2 1, , , kc c c c −= K  for some 2SSci −∈ .  Hence 1−= kac .  If S is nilpotent, then }0{=jS  for some least positive 

integer j and, by the above, }.0,,,{ 2 == jaaaS K  clearly such a semigroup is medial. 

 If S is nonidempotent and nil, but non-nilpotent, then }0{≠jS  for all 1≥j .  Let N be any positive integer such 

that 0=Na .  Let }0{3 −∈ NSb , 1 2 3, . Nb b b b= K  say.  Since 11 SbSa i∉  unless iba =  for each i.  By the total 

ordering on ideals of S, for each i, there are elements 1, Sts ii ∈  such that iii atsb = .  Now, for some index 

}0{, 1 −∈< +
m

ii SstNi  for every m > 0, for otherwise, the product 

)()()())(( 33222211 NNNNNN atsatsatsatsatsb KKK=  involves the power aN.  Similarly, an element 1+jj st  has the same 

property for some index Nj 2≥ . 

 If S is also permutative, then there exists K such that SK is medial.  Therefore if KN ≥ , all the terms between 

1+ii st  and 1+jj st  in the product for b may be commuted, yielding a term aN, contradicting 0≠b .  Thus the second 

statement in the lemma is proven.  As noted in Section one, every idempotent, permutative semigroup is medial. 
 
Lemma 3.5 

Let S be a permutative semigroup with a dense ideal R that is a right zero semigroup.  If R is nontrivial, then S/R is 
nilpotent. 
 
Proof 

Suppose S satisfies the identity 1 2 (1) (2) ( ), , , , , , ,n nx x x x x xσ σ σ=K K  for some n > 1, where σ is a non-trivial 

permutation.  Then  nn =)(σ  since, otherwise, if r, s are distinct members of R, substituting r =xn and )(nxs σ=  (and 

substituting arbitrarily for any other variables) yields r = s.  Let i be least such that jj =)(σ  for i j n≤ ≤ .  Clearly 2>i .  Let 

Rr ∈  and substitute, rxi =−1 .  Then nini xrwxxrx KK =  for every Rr∈ , where w is a non-empty word in },,,{ 221 −ixxx K .  It is 

easy to see that {( , )  S:( ) }a b S r R ra rbη = ∈ × ∀ ∈ =  is a congruences on S such that the restriction R|η  of η  to R equals 

Rid .  As R is a dense ideal of S, we have sid=η . As ( , , , , , ) ,i n i nx x wx x η∈K K , we get that , , , ,i n i nx x wx x=K K  is an identity 

satisfied in S.  Now by choosing for any one of the variables in w an element of R, it follows that Rxx ni ∈K  for , ,i nx x S∈K .  

Thus RS in ∈+− 1 ; equivalently, }0{)/( 1=+−inRS . 

 
Lemma 3.6 

No permutative ∆-semigroup can be an ideal extension of a nontrivial right (or left) zero semigroup by a non-trivial 
nil semigroup. 
 
Proof 

Suppose such a semigroup S exists, with non-trivial right zero ideal R.  Then, as observed in Section one, R is a 
dense ideal of S.  By the previous Lemma, S/R is nilpotent.  Since S/R is also a ∆-semigroup, it is finite cyclic.  Then Result 
2.7 applies. 
 
Proposition 3.7 

Every permutative, Archimedean ∆-semigroup is either 
(a) simple, whence a group or a left or right zero semigroup, or  
(b) nil.  In any case, every such semigroup is medial. 

 
Proof 

Let S be such a semigroup.  If S is simple then S is idempotent and so is medial, thus a rectangular group [16] and so 
is as described, by the comments following Result 2.7. 
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 If S is not simple then, by Theorem 3.3 and Result 2.6, S contains an idempotent element.  By Theorem 3.1, Result 
2.7 and the remarks that follow the latter, S is an ideal extension of a right or left zero semigroup K by a non-trivial nil 
semigroup.  By Lemma 3.5, [K] = 1, that is, S is a non-trivial nil semigroup.  The mediality now follows by Lemma 3.6. 

Finally, we may consider the general permutative case. 
 

Theorem 3.8 
Every permutative ∆-semigroup is medial. 

 
Proof. 

Let S be such a semigroup.  The Archimedean case is covered by the preceding result.  We have seen that the 

alternative case is when S is a semilattice of two Archimedean semigroups S1 and S0 with 010 SSS ⊆ .  By Result 2.3, 0
1S  and 

so S1 is an Archimedean ∆-semigroup.  It is clear that S1 is permutative. Then S1 is either a group or a two-element right or 

left zero semigroup (see also Result 2.6).  In all three cases 00
2 ≠SS I  and 2

1 SS ⊆ .  As the ideals S0 and S2 of S are 

comparable, we have S2 = S.  Then, by Result 2.2, s is a medial semigroup. 
 
4.0 Medial ∆∆∆∆-semigroups 
 We shall refine the following partial description of the medial ∆-semigroups summarized by the first author, 
deducible from the results of Trotter’s Theorems 2.7, 3.5, 3.6 of [17]. 
 
Result 4.1 (Theorem 9.20 of [8]) 

A medial semigroup is a ∆-semigroup if and only if it satisfies one of the following conditions. 
(i)       S is a ∆-group (necessarily abelian), or such a group with a zero adjoined. 
(ii )       S is a nil ∆-semigroup. 
(iii )       S is isomorphic to either R or R0, where R is a two-element right zero semigroup. 
(iv)       S is isomorphic to the dual of a semigroup of type (iii ). 

(v) NNeeNandsemigroupnilaisNeewhereeNS ⊆== ,,},{ 2
U  

Trotter [17] called any ∆-semigroup constructed in the fashion of (v) a T1 semigroup.  (In our earlier notation, 

.)}{ 10 SeSN ==  

We shall first show that every medial, nil ∆-semigroup is commutative; and then that every medial, T1 ∆-semigroup 
is either commutative or is isomorphic to the semigroup Z of Theorem 1.1 or its dual.  In view of Result 1.1, the proof of 
Theorem 1.1 is then complete. 

A semigroup is left commutative if it satisfies the identity abx = bax; right commutativity is defined dually.  Clearly 
all such semigroups are medial. 
 
Proposition 4.2 

If S is a left or right commutative, nil ∆-semigroup then it is commutative. 
 
Proof 

We need only consider the identity baxabx= .  Let {( , ) : ,a b S S as bsρ = ∈ × = ∀ }Ss∈ .  It is well known that ρ 

is congruence on S; from the identity it follows that S/ρ is commutative. 
By Result 2.4, ρ is the Rees ideal congruence modulo, the ideal ρ0=I , which is the left annihilator of S.  Thus if 

Sa∈ , either 0=aS  or }.{aa =ρ   now let baSba ≠∈ ,, .  If , ,a b ab I∉ , then since ρ/S  is commutative, 

baab= .  If Iba ∈,  then ab = ba = 0. 

If Iba ∉,  then, since the principal ideals of S are totally ordered, without loss of generality a = xby for some 
1, Syx ∈ .  Since IyxIa ∉∉ ,, .  By the first case above, x, b, y commute.  Hence ab = ba. 

Without loss of generality, the remaining case is where ., IbIa ∉∈  As above, xbya =  for some 1, Syx ∈ .  If 

y I∉ , then bxyxby= .  Thus we may assume that either a = bx or a = xb for some Sx∈ .  If x I∉  then by the 

previous paragraph bx = xb and so ab = ba.  Thus we may assume x I∈ .  Now we may similarly write 1bxx =  or bxx 1=  
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for some Sx ∈1 .  If 1x I∉  then, again similarly, bxbx 11 =  and so 1
2xba =  or 2

1bxa= , whence ab = ba.  If  1x I∈ , 

continue this process by writing 21 bxx =  or bxx 21 = .  By induction, wither some 1x I∉  and then ab = ba, or for all i 

there exists xi such that i
i xba 1+=  or 1+= i

ibxa .  But Sis nil, so it follows that a = 0, completing the proof. 

 
Theorem 4.3 

If S is a medial, nil ∆-semigroup, then S is commutative. 
 
Proof 

 Again, let ρ be the congruence {( , ) : ,a b S S as bs∈ × = ∀ }Ss∈ .  From the medial identity it is clear that S/ρ is 

right commutative.  Since it is again a nil ∆-semigroup, it is commutative, by the previous propositions.  Let ρ0=LI .  Let 

λ be the dual congruence, so that S/λ is also commutative.  Let λ0=LI .  As in the proof of the proposition, for each 

Sa∈ , either LIa =ρ  or }{aa =ρ , and dually. 

 Since the ideals of S are totally ordered, without loss of generality RL II ⊆ .  Let Sba ∈,, .  If LIba ∉,  then 

precisely as in the third and fourth paragraphs of the proof of the previous proposition, ab = ba.  Otherwise, without loss of 

generality, LIa∈ , so ab = 0.  But also RIa∈ , so ba = 0. 

We now turn to T1 semigroups. 
 
Result 4.1 (Theorem 1.58 of [13], Lemma 3.3 of [17] 

Let }{eNS ∪= be any T1 semigroup.  Then every ideal of N is also an ideal of S and so N is also a ∆-semigroup. 

 
Theorem 4.4 

Let }{eNS ∪=  be a medial T1 semigroup.  Then N is a commutative ∆-semigroup and S satisfies one of the 

following conditions. 
(i) e acts as an identity element for N and S itself is commutative. 
(ii ) e acts as a right identity and a left annihilator for N and S is isomorphic to the semigroup Z in Theorem 2.1 (iii). 
(iii ) the  dual of the previous case. 

 
Proof 

That N is commutative is immediate from Result 4.1 and Theorem 4.4.   
 Now suppose that S is any T1 semigroup for which N is commutative.  We show first that for any Na∈ , either 

aea=  or 0=ea .  (The dual statement obviously also holds.)  Result 4.1 shows that since 11aNN  is an ideal of N, it is 

also an ideal of S, whence it contains ea.  Hence, if aea≠ , then atea=  for some Nt ∈ .  Then neateatea =−  for 
each n and, since .0, =∈ eaNt  

 Next suppose that ea = a for some non-zero Na∈ .  Let Nb∈ .  Either b = ax or a = bx, for some 1Sx∈ .  In 

the former case, baxeaxeb === ; in the latter case, suppose eb = 0: then e = ebx = 0, a contradiction, so that again eb = b.  
Hence e is either a left identity for S or a left annihilator for N.  Clearly the dual statement also holds. 
 
Conclusion 

In this paper, we have show that if N is nonzero, then e cannot be both a left and a right annihilator for N.  For in that 

event, given 1111},0{ eSSaSSNa ⊂−∈ , so  a = set, for some 1, Sts ∈ . Both s and t cannot belong to N, for then se = et 

= 0.  But otherwise, either a = ea or a = ae, contradicting the assumption.  e is either an identity for S, or is a right identity 
for S and a left annihilator for N, or is a left identity for S and a right annihilator for N.  If 0)()( === ebabaeab , then N is a 

null semigroup.  But every subset of N that contains 0 is an ideal, so 2|| ≤N .  When }0{=N , e actually acts as an identity.  

Otherwise, N = { a, 0}, say, where ae = a, ee = e and all other products are 0. 
 The concrete results obtained raise the question whether Trotter’s results [17] on exponential ∆-semigroups can 
similarly be strengthened.  In particular, is it true (c.f. Theorem 5) that every nil, exponential ∆-semigroup is commutative? 
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