Regular algebraic monoids

Adewale Oladipo Oduwale

Department of Mathematics, University of Benin, Benin City, Nigeria.

Abstract

The purpose of this paper is to provide a proper identification of normal irreducible, regular algebraic monoids. The results from the work of Renner [3,4] suggest that we should be able to find a classification of these monoids in terms of their unit groups, and related toroidal data. That is what we accomplish here.

Keywords: Unipotent radical, . toroidal data, normal, irreducible, regular, zero element, maximal torus, Zariski closure, Lie algebra.
AMS Mathematics Subject Classification (2000): 08-XX, 05F05, 66-XX and 18B35.

1.0 Introduction

Assume that M is a normal, regular, algebraic monoid with unit group G. All our algebraic monoids are defined over an algebraically closed field of arbitrary characteristic. Let $e \in M$ be a minimal idempotent, and define

$$
G_{e}=\{g \in G \mid g e=e g-e\}^{0}
$$

Assume, for simplicity, that G_{e} is a Levi factor of G. Thus

$$
G \cong G_{e} \alpha R_{u}(G) \text { (semidirect product) }
$$

where

$$
U=R_{u}(G) \Delta G \text { is the unipotent radical of } G .
$$

Theorem 1.1

(a) Let $T \subseteq G$ be a maximal torus and let $\bar{T} \subseteq M$ be Zariski closure of T in M. So $T \subseteq \bar{T}$ induces $X(\bar{T}) \subseteq X(T)$. Let $\Phi_{U} \subseteq X(T)$ be the weights of the action Ad \rightarrow Aut $\left.L(U)\right)$ on the Lie algebra of U. Then $\Phi_{U} \subseteq X(\bar{T}) \bigcup-X(\bar{T})$.
(b) Conversely, suppose we are given an algebraic group $G=G_{0} \alpha R_{u}(G)$ (where $G_{0} \subseteq G$ is a Levi factor) along with a normal torus embedding $T \subseteq \bar{T}$ of the maximal torus $T \subseteq G_{0}$. Let M_{0} be the normal, reductive monoid with 0 and unit group G and maximal D-monoid \bar{T} [3]. Consider the action Ad $: \rightarrow \operatorname{Aut}(L(U))$ and assume that $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$. Then there exists a unique, normal, algebra monoid M with unit group G and maximal D-monoid $\bar{T} \subseteq M$.
(c) Any monoid M, as in (b), has the following structure: Let $e=e^{2} \in M$ be the zero element of M_{0}. Define $U_{+}=\{u \in U \mid e u=e\}, U_{0}=\{u \in U \mid e u=u e\}$ and $U_{-}=\{u \in U \mid e u=e\}$. Then $M \cong U_{+} \times M_{e} \times U_{-}$and the monoid multiplication of M can be defined explicitly with these coordinates.
The above theorem is an organized summary of Corollary 2.3, Proposition 2.6 and Theorem 3.3.
We should note that Theorem 1.1 classifies only those normal regular monoids with unit group G of a particular type (that is, G is related to the monoid in a particular way). The general case is explained in Section 4. It is a relatively minor modification of the above theorem. For convenience we describe it here.

So, let M be any normal, irreducible, regular, algebraic monoid with unit group G , and let $e \in E(M)$ be a minimal idempotent. Let $N=\overline{G_{e} R_{u}(G)}$ (Zariski closure), and set $H=G_{e} R_{u}(G)$. The following theorem is an organized summary

So, let M be any normal, irreducible, regular, algebraic monoid with unit group G , and let $e \in E(M)$ be a minimal idempotent. Let $N=\overline{G_{e} R_{u}(G)}$ (Zariski closure), and set $H=G_{e} R_{u}(G)$. The following theorem is an organized summary of Lemma 4.1 and Theorem 4.2.

Theorem 1,2

(a) $\quad N$ is a regular monoid of the type considered in Theorem 1.1. Furthermore $g N g^{-1}=N$ for $g \in G$.
(b) Define $N \times H_{G}=\{[x, g] \mid x \in N, g \in G\}$ where $[x, g]=[y, h]$ if there exists $k \in H$ such that $y=x k^{-1}$ and $h=k \dot{g}$. Then $N \times H_{G}$ is a regular monoid with multiplication $[x, g \llbracket y, h]=\left\langle x g y g^{-1}, g h\right|$. Furthermore,

$$
\begin{gathered}
\phi: N \times H_{G} \rightarrow M \\
\phi([x, g])=x g
\end{gathered}
$$

is an isomorphism of algebraic monoids.

2.0 Disintegration of regular monoid

A monoid is regular for any $x \in M$ such that $x a x=x$. Let M be a normal, regular, irreducible, algebraic monoid with unit group G, and let $\left.e \in E(M)=\{e \in M\} e=e^{2}\right\}$ be a minimal idempotent. By Theorem 7.4 of [1] $G_{e}=\{g \in G \mid g e=e g=e\}^{0}$ is a reductive subgroup of G.

Assumption 2.1

$G_{e} \subseteq G$ is a Levi factor, so that $G=G_{e} \times R_{u}(G)$, where $R_{u}(G)<\mid G$ is the unipotent radical.
As pointed out in the introduction, the general case can easily be derived from this one. We adhere strictly to Assumption 2.1 except in Section 4.

Proposition 2.2

Let T be a maximal torus and define $N=\overline{T R_{u}(G)} \subseteq M$. Then N is regular.

Proof

Since M is regular, G_{e} is reductive for any minimal idempotent e of M. so $G_{e} \cap R_{u}(G)=\{1\}$. Thus, $\left(T R_{u}(G)\right)_{e} \cap R_{u}(G)=\{1\} . \quad$ So $\left(T R_{u}(G)\right)_{e}$ has no unipotent elements other than the identity. So it must be a torus. By Theorem 7.4 of [1], N is regular.
Corollary 2.3
Let $\Phi_{U} \subseteq X(T)$ be the weights of Ad: Ad $: \rightarrow \operatorname{Aut}(L(U))$ on the Lie algebra $L(U)$ of $U=R_{u}(G)$. Then $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$.

Proof

Since \bar{T} has a zero, this follows from Corollary 2.4 of [4].

Proposition 2.4

Let $U=R_{u}(G)$ and let
$U_{+}=\{u \in U \mid e u=e\}$,
$U_{0}=\{u \in U \mid e u=u e\}$ and
$U_{-}=\{u \in U \mid u e=e\}$.
Then (a) $U=U_{+} U_{0} U_{-} \cong U_{+} \times U_{0} \times U_{-}$
(b) $\quad G_{e} \subseteq N_{G}\left(U_{+}\right) \cap C_{G}\left(U_{0}\right) \cap N_{G}\left(U_{-}\right)$.

Proof
(a) Follows from Formula (3) of [4].
(b) Notice first that $G_{e} \subseteq C_{G}(e)$. So if $u \in U_{+}$and $g \in G_{e}$, then $e g u g^{-1}=g(e u) g^{-1}=e$. So $g u g^{-1} \in U_{+}$.

Similarly, $G_{e} \subseteq N_{G}\left(U_{-}\right)$.
Now $G_{e} \subseteq N_{G}\left(U_{0}\right)$, by an argument similar to the above. But we can prove a little more for U_{0}. Indeed, let $T \subseteq G_{e}$ be a maximal torus and let $u \in U_{0}$. Then for $t \in T$, etut $t^{-1}=e u t^{-1}=u e=e u$. So $e t u t^{-1} u^{-1}=e$, which implies that $t u t^{-1} u^{-1} \in U_{+}$. But $e t u t^{-1} u^{-1} \in U_{0}$ since $T \subseteq N_{G}\left(U_{0}\right)$. So $t u t^{-1} u^{-1} \in U_{0} \cap U_{-}=\{1\}$, so that $u t=t u$. But then $T \subseteq C_{G}\left(U_{0}\right)$ for any maximal torus $T \subseteq G_{e}$. On the other hand, $\bigcup_{T \subseteq G} T \subseteq G$ is Zariski dense. Thus, $G_{e} \subseteq C_{G}\left(U_{0}\right)$.

Proposition 2.5
Let $M_{e}=\bar{G}_{e} \subseteq M$. Then M_{e} is normal.
Proof
Consider

$$
\varphi: M_{e} \rightarrow M \rightarrow M / / R_{u}(G)
$$

where $M / / R_{u}(G)$ is as in Theorem 4.2 of [2]. Now $M / / R_{u}(G)$ is normal and $o\left(M / / R_{u}(G)\right)=o(M)^{R_{u}(G)}$. By Theorem 4.2 of [2], φ induces an isomorphism on \bar{T}, so by Corollary 4.5 of [3] φ is an isomorphism.

Proposition 2.6

$$
M \cong U_{+} \times C_{M}(e)^{0} \times U_{-} \text {and } C_{M}(e)^{0} \cong M_{e} \times U_{0}
$$

Proof
Define $\phi: U_{+} \times C_{M}(e)^{0} \times U_{-} \rightarrow M$ by $\varphi(x, y, z)=x y z$. We define a monoid structure on $U_{+} \times C_{M}(e)^{0} \times U_{\text {. }}$ so that φ is a morphism, and $U_{+} \times C_{M}(e)^{0} \times U_{\text {- }}$ is regular. From there it follows that φ is surjective and birational. But M is normal, so φ is an isomorphism.

By Corollary 2.3 and the comments following Corollary 2.4 of [4], $\Phi_{U_{+}} \subseteq X(\bar{T})$ and $\Phi_{U_{-}} \subseteq-X(\bar{T})$. So we obtain $\bar{T} \rightarrow \operatorname{End}\left(U_{+}\right)$extending $T \rightarrow \operatorname{Aut}\left(U_{+}\right), g \mapsto \operatorname{int}(g)$; and $\bar{T} \rightarrow \operatorname{End}\left(U_{-}\right)$extending $T \rightarrow \operatorname{Aut}\left(U_{-}\right), g \mapsto \operatorname{int}\left(g^{-1}\right)$. So the sought after multiplication on $U_{+} \times C_{M}(e)^{0} \times U_{\text {- }}$ can be defined in [4]. That is
$(u, x, v)(a, y, b)=\left(u \zeta_{+}(v, a)^{x}, x \zeta_{0}(u, v) y, \zeta_{-}(v, a)^{\bar{y}} b\right)$
where ζ_{+}, ζ_{0} and ζ_{-}are defined by

$$
\begin{aligned}
& \zeta_{+}: U_{-} \times U_{+} \xrightarrow[m]{ } U_{+} U_{0} U_{-} \xrightarrow[p_{1}]{\longrightarrow} U_{+}, \\
& \zeta_{0}: U_{-} \times U_{+} \xrightarrow[m]{ } U_{+} U_{0} U_{-} \xrightarrow[p_{2}]{\longrightarrow} U_{0} \text { and } \\
& \zeta_{-}: U_{-} \times U_{+} \xrightarrow[m]{ } U_{+} U_{0} U_{-} \xrightarrow[p_{3}]{ } U_{-} .
\end{aligned}
$$

The action of $x \in \bar{T}$ on $u \in U_{+}$is denoted u^{x}, and $y \in \bar{T}$ on $v \in U_{-}$by $v^{\bar{y}}$.
In this section we start with the pieces, and show how to construct a regular monoid.

3.0 Construction of regular monoid

Definition 3.1. Let M_{0} be a normal, reductive monoid with 0 , and let U be a connected, unipotent group with regular action $\rho: G_{0} \rightarrow \operatorname{Aut}(U)$ such that $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$. In the situation of 3.1 we can write $U=U_{+} U_{0} U_{-}$where

$$
\left.\mathrm{L}\left(U_{+}\right)=(\underset{\alpha \in X(\bar{T})}{\oplus}) \cdots L(U)_{\alpha}, L\left(U_{0}\right)=C_{L(U)}(T) \text { and } \mathrm{L}_{\left(U_{-}\right)}\right)=(\underset{\alpha \in-X(\bar{T})}{\oplus}) \cdots L(U)_{\alpha} .
$$

Proposition 3.2

$$
U_{+}, U_{0} \text { and } U_{-} \text {are stabilized by } G_{0} \text { under } \rho .
$$

Proof

Let $\lambda: K^{*} \rightarrow Z\left(G_{0}\right) \subseteq T$ be a 1-psg (where psg is periodic subsemigroups) such that $\lim _{t \rightarrow 0} \lambda(t)=0$. Such a λ exists because G_{0} is reductive. The $\lambda^{*}(X(T)) \subseteq Z=X\left(k^{*}\right)$. One checks that $\lambda^{*}\left(X(\bar{T}) \backslash\{0\} \subseteq Z^{+}\right.$and $\lambda^{*}\left(-X(\bar{T}) \backslash\{0\} \subseteq Z^{-}\right.$. Thus,

$$
\begin{aligned}
U_{+} & =\left\{u \in U \mid \lim _{t \rightarrow 0} \lambda\left((t) u \lambda(t)^{-1}=1\right\}\right. \\
U_{-} & =\left\{u \in U \mid \lim _{t \rightarrow 0} \lambda(t)^{-1} u \lambda(t)=1\right\} \text { and } \\
U_{0} & =C_{U}\left(\lambda\left(k^{*}\right)\right) .
\end{aligned}
$$

But $\lambda\left(k^{*}\right) \subseteq G_{0}$ is central. Thus U_{+}, U_{0} and U_{-}are stabilized by G_{0} under ρ.

Theorem 3.3

Let M_{0}, ρ and U be as in 3.1. Then $U_{+} \times M_{0} \times U_{+} \times U_{-}$has the unique structure of a regular, algebraic monoid extending the group law on $U_{+} \times G_{0} \times U_{+} \times U_{-} \cong G \times U,(u, g, v, w) \mapsto(g, u n w)$.
Proof
By Proposition 3.2, $\rho: G \rightarrow \operatorname{Aut}(U)$ stabilizes U_{+}, U_{0} and U_{-}. By definition, $\rho \mid T: T \rightarrow \operatorname{Aut}\left(U_{+}\right)$ extends over $\bar{T}, \rho^{-1} \mid T: T \rightarrow \operatorname{Aut}\left(U_{-}\right)$extend over \bar{T}. Thus, by Corollary 4.5 of [3] there exist unique

Regular algebraic monoids. Adewale Oladipo Oduwale J of NAMP
$\rho: G_{0} \rightarrow \operatorname{Aut}\left(U_{+}\right)$and unique $\rho_{-}: M_{0} \rightarrow \operatorname{End}\left(U_{-}\right)$extending $\rho^{-1}: G_{0} \rightarrow \operatorname{Aut}\left(U_{-}\right)$. Using formula (4) of [4] we can define the desired multiplication on $U_{+} \times M_{0} \times U_{+} \times U_{-}$, just as we did in Proposition 2.6 above.

4.0 The general case

In this section we consider normal regular monids, but without the restrictions of Assumption 2.1. So let M be normal and regular. If $e \in E(M)$ is a minimal idempotent define $N=\overline{G_{e} R_{u}(G)}$.

Lemma 4.1

(a) $g N g^{-1} \subseteq N$ for $g \in G$.
(b) $\quad N$ is a regular monoid of the type considered in Assumption 2.1.

Proof
If $g \in G$ then $g G_{e} g^{-1}=G_{g e g^{-1}}$. But from Theorem 6.30 of [1] it follows that $g e g^{-1} h e h^{-1}$ for some $h \in G_{e} R_{u}(G)$.
But then

$$
\begin{aligned}
g G_{e} g^{-1} & =h G_{e} h^{-1} g G_{e} R_{u}(G) g^{-1}=g G_{e} g^{-1} g R_{u}(G) g^{-1} \\
& =g G_{e} R_{u}(G)=h G_{e} h^{-1} R_{u}(G)=h G_{e} h^{-1} R_{u}(G) h^{-1} \\
& =h G_{e} R_{u}(g) h^{-1}=G_{e} R_{u}(G)
\end{aligned}
$$

since $h \in G_{e} R_{u}(G)$. By continuity, $g N g^{-1} \subseteq N$.
For (b), notice that G_{e} is reductive by Theorem 7.4 of [1]. But $\left(G_{e} R_{u}(G)\right)_{e}=G_{e}$ and so, again by Theorem 7.4 of [1], N is regular. Furthermore, $G_{e} \times R_{u}(G) \rightarrow G$ is bijective. But we need a little more in positive characteristic. So let $k^{*} \subseteq Z\left(G_{e}\right) e \in \overline{k^{*}}$, as in the proof of Proposition 3.2. So $G_{e} \subseteq C_{G}\left(k^{*}\right)=G_{e} U_{0}=U_{0} G_{e}$. But also $\mathrm{L}(G)=\mathrm{L}$ $(G)+\oplus \mathrm{L}\left(G_{e} U_{0}\right) \oplus \mathrm{L}(G)_{-}$, because global and infinitesimal centralizers correspond for torus actions. But from the proof of Proposition 3.2, $\mathrm{L}\left(U_{+}\right) \subseteq \mathrm{L}(G)_{+}$and $\mathrm{L}\left(U_{-}\right) \subseteq \mathrm{L}(G)_{-}$. Thus $\mathrm{L}\left(U_{+}\right) \subseteq \mathrm{L}(G)_{+}$and $\mathrm{L}\left(U_{-}\right) \subseteq L(G)_{-}$since $\operatorname{dim} G=\operatorname{dim}\left(U_{+}\right)+\operatorname{dim}\left(U_{-}\right)+\operatorname{dim}\left(G_{e} U_{0}\right)$, while $U_{+} \times G_{0} \times U_{+} \times U_{-} \cong G$. But then $G_{e} \cap R_{u}(G)=G_{e} \cap U_{0}$. But from 2.4(b), $G_{e} \subseteq C_{G}\left(U_{0}\right)$. So $G_{e} \cap U_{0}$ is a central, unipotent subgroup scheme of G_{e}. On the other hand, it is well known that $Z\left(G_{e}\right)$ is a disagonalizable group (possibly non reduced, in general). In any case $G_{e} \cap U_{0}=G_{e} \cap R_{u}(G)$ must be the trivial group scheme. Thus, $G_{e} \times R_{u}(G) \rightarrow G$ is separable, and therefore an isomorphism.

Let $H=G_{e} R_{u}(G)$ and define $N \mathrm{x}^{H} G=\{(x, g) \mid x \in N, g \in G\} / \sim$ where $(x, g) \sim\left(x h^{-1}, h g\right)$ if $h \in H$. Define $\varphi: N \mathrm{x}_{H} G \rightarrow M$ by $\varphi([x, g])=x g$.

Theorem 4.2

φ is an isomorphism
Proof
From the proof of $4.1, H$ is a normal subgroup of G_{-}. Define a multiplication on $N \mathrm{x}^{H} G$ by $[x, g][y, h]=\left[x g y g^{-1}, g h\right]$. One checks that this is well defined. Furthermore, φ is a morphism of algebraic monoids.

Now φ is birational since $G\left(N \times \mathrm{H}_{G}\right)=G=G(M)$. But also, $G \varphi(N) G=M$, since , Proposition 6.27 of [1], N intersects every J-class of M. So φ is surjective and birational, while M normal. Thus φ is an isomorphism.

5,0 Conclusion

Regular monoids, in general, are constructed from those that satisfy Assumption 2.1. Indeed, let N be a normal regular monoid with unit group H, and assume $H=H_{e} R_{u}(H)$ (as in 2.1). Assume $H \triangleleft G$ and G / H is reductive. Then we can define a regular monoid M with unit group G.

$$
\begin{aligned}
& M=N \times H_{G} \text { with multiplication } \\
& {[x, g][y, h]=\left[x g y g^{-1}, g h\right]}
\end{aligned}
$$

By Theorem 4.2, all normal regular algebraic monoids are obtained this way:

References

[1] Putcha, M. S., "Linear Algebraic Monoids", Cambridge University Press, Cambridge, UK, (1999).
[2] Renner, L. E., Reductive monoids are von Neumann regular, Jorunal of Algebra, 93237 - 45. (1995),
[3] Renner, L. E., Classification of semisimple algebraic monoids, Trans. Amer. Math. Soc., 292 (93-223. (1995),
[4] Renner, L. E., Completely regular algebraic monoids, J. Pure and Applied Algebra, 59291 - 298. (2000),

