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Abstract 

 
We investigate the question over the nature of the left and right derivatives of 

Moufang loops and find out that the derivatives of a Moufang loop are Moufang loops 
that is, loops of Bol-Moufang type. 
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1.0 Introduction 
A groupoid is a system ��,·� such that � is a non-empty set and �·� is a binary function on �. For a groupoid ��,·�, 

one can define the following two functions called left and right translation by: �� � �, 	���: � � �;   �	��� � � · � and   
����: � � � such that ����� � � · �. If the translation maps are bijections then ��,·� is said to be a quasigroup. A loop is a 
quasigroup which has an identity element, 1, satisfying �� �� · 1 � 1 · � � ��. Quasigroups are studied not only in algebra, 
but also in combinatorics, where they are identified with Latin squares,and in projective geometry, where they are identified 
with 3-webs. For details and references to earlier literature, see [1, 2, 5, 6]. By results of [2], the following four identities: 
  

(1): �� · �� · ��� · � � �� · �� · �� · ��  (2): �� · �� · �� · �� � � · ��� · �� · ��   

(3): ��� · �� · �� · � � � · �� · �� · ���  (4): ��� · �� · �� · � � � · �� · �� · ���      
 
Definition 2.2             
An isotopism of ��,·� into ��,·� is called an autotopism of ��,·�. The concept of principal isotopy can be introduced with the 
following. for all �, �, � � � are equivalent in loops; by [3], they are also equivalent in quasigroups. A loop satisfying these 
identities is called a Moufang loop. 
 

2.0 Preliminaries  
          
In this section we summarize definitions, notations and known or elementary results in loops theory which will be useful to 
this study. 

Definition 2.1             

A triple ��, �, �� of bijections from a set � into a set � is called an isotopism of a groupoid ��,·� into a groupoid ��,�� 
provided �� � �� � �� · ��� for all �, � � �. ��,�� is then called an isotope of ��,·�, and groupoids ��,·� and ��,�� are 
called isotope to each other. It follows directly from this definition that a bijection �: � � � is an isomorphism from ��,·� to 
��,�� if and only if ��, �, �� is an isotopism of ��,·� into ��,��. Consequently, isomorphism groupoids are isotopic. But 

isotopic groupoids need not be isomorphic. Thus, the concept of isotopy is a generalization of that of isomorphy. 
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Definition 2.3 
             
Let � and � be permutations of ��,·� and let � denote the identity map on �. Then, ��, �, �� is a principal isotopism of a 
groupoid ��,·� into a groupoid ��,�� means that ��, �, �� is an isotopism of ��,·� into ��,��. Principal isotopy (Just as isotopy) 
is an equivalence relation on any non-empty set of groupoids. 
Theorem 2.4 [6].          
If ��,·� and ��,�� are isotopic groupoids, then ��,�� is isomorphic to some principal isotope of ��,·�  
 
3.0  Derivatives            
If ��,·� is a quasigroup, we will call operation �·� a function � on � and write for all �, � � �, � · � � ���, �� and ��,·� �
��, ��. If there are several different quasigroups on the same carrier set �, we sometimes will denote quasigroups 
��, ���, ��, ���, … simply by ��, ��, …     

In this section, we shall use the following notation: let � be the carrier set of quasigroups ��, ��, �!, …, then 
(a) if � is an isomorphism �: ��, ��� � ��, ���, we write �� � ���, 
(b) if ��, �, �� is an isotopism �� � ��, then we write �� � ����, �, ��, 
(c) if�", #, $� is an autotopism of ��, ��, then we write ���, �, �� � �. 

If ��, �� is a non-associative quasigroup, then a fixed element � � � determines a new operation ��� on � such 
that    

                             �� · %� · & � � · �% � &�       (1)  
   

 for all %, & � �. The operation ��� depends entirely on our choice of � � �.    
We shall denote ��� by �' and call �' the left derivatives of � with respect to �. From (1), we have %	��� · & � �% � &�	���. 
Thus, we have the isotopism �	���, �, 	���: �' � �. We now can write       
 
                               ��	���(�, �, 	���(�� � �'.              (2)         
 
Similarly, a fixed element � � � determines another operation �)� on � such that     
    
   % · �& · �� � �% ) &� · �.       (3)    
 
We denote �)� by �' and call �' the right derivatives of � with respect to �. Rewriting (3) as % · &���� � �% ) &�����, we 

get the isotopism ��, ����, �����: �' � � or       

 
   ���, ����(�, ����(�� � �'.      (4)       
 
We summarize this in the 
 
Definition 3.1             
The isotopes ��	���(�, �, 	���(�� � �' and ���, ����(�, ����(�� � �' are called left and right derivatives of � with respect 
to a fixed element � � �.  

 
4.0 Main results: 
Theorem.             

The left and right derivatives of Moufang loops are Moufang loops. 
To prove this theorem, we need some lemmas. 
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Lemma 1             
 
If �*,·� is a Moufang loop then any loop-isotope of �*,·� is isomorphic to a principal isotope �*,�� such that  

 % � & � �% · +� · �+(� · &� for some + � *. 
 
Proof. 
  
        Let �*,·� be a Moufang loop with identity element 1. We knows that every loop isotope of �*,·� is isomorphic to some 
�, � ,isotope �*,)� such that % ) & � �% · �(�� · ��(� · &�. The identity element of �*,)� is then - � � · �. Consider an 

isotope �*,�� of �*,)� such that ���-�, ��-�, ��-��: �*,�� � �*,)� where ��-�: % � % · - � % · �� · ��. Then we have      

                   �% � &���-� � %��-� ) &��-� � �% · -� · �& · -�, or                                                              

                   % � & � .��% · -� · �(�� · ��(� · �& · -�/ · -(�. 

 Let �% · -� · �(� � 0 and �(� · �& · -� � 1.  
Using Moufang identities and keeping in mind that - � � · �, we have    

    % � &    � �0 · 1� · -(� � 2��0 · -� · -(�� · 13 · -(� � �0 · -� · �-(� · 1 · -(��    

 � 2��% · -� · �(�� · -3 · 2-(� · ��(� · �& · -�� · -(�3 � �% · �- · �(� · -� · .�-(� · �(�� · ��& · -� · -(��  

    � �% · �- · �(� · -� · ��-(� · �(�� · &�.                        

Let - · �(� · - � +, then + � ��� · �� · �(�� · - � � · - and +(� � -(� · �(�. We now have  % � & � �% · +� · �+(� · &�. 

The identities element of �*,�� is clearly 1, since % � 1 � �% · +� · �+(� · 1� � % and  1 � % � �1 · +� · �+(� · %� � %. The 

isotopism ���-�, ��-�, ��-��: �*,�� � �*,)� is an isomorphism �*,�� � �*,)�. We now have �*,)� 4 �*,�� which 

completes the proof.   
In the sequel we will call �*,�� the + ,isotope of �*,·�. 
 

Lemma. 2            

Every loop isotope to a Moufang loop is a Moufang loop. 

Proof.              

In view of lemma 1., we only have to consider + ,isotopes. Let �*,�� be a + ,isotope of a Moufang loop �*,·�. Then  
% � & � �% · +� · �+(� · &�. It is sufficient to show that �*,�� satisfies the Moufang identity �% � &� � �5 � %� � % �
.�& � 5� � %/. Let us now denote the left side of this identity by 6 and the right side by 7. To prove the theorem, we shall 
show that 6 � 7.         
Rewriting ��� in terms of �·� and using Moufang identities in �*,·� repeatedly, we have      

  6  � �% � &� � �5 � %� � 2��% · +� · �+(� · &�� · +3 · 2+(� · ��5 · +� · �+(� · %��3 

                                   � 8% · 2+ · �+(� 9 �& 9 +��3: 9 82�+(� · �5 · +�� · +(�3 · %: � �% · �& · +�� · ��+(� · 5� · %�,          

  7 � % � .�& � 5� � %/ � �% · +� · 8+(� · 2��& · +� · �+(� · 5�� · + · �+(� · %�3: 

                                  � �% · +� · 8+(� · 2�& · �5 · +�� · �+(� · %�3: � �% · +� · ;.+(� · �& · �5 · +� · +(�/ · %< 

                                  � % · ;+ · .�+(� · &� · �5 · +�� · +(�/< · % � % · .�& · �5 · +�� · +(�/ · % 

                                  � % · 82��& · +� · +(�� · �5 · +�3 · +(�: · % � % · 8�& · +� · 2+(� · ��5 · +� · +(��3: · % � % · 2�& · +� ·

                                          ��+(� · 5� · �+ · +(���3 · % 

                                  � % · ��& · +� · �+(� · 5�� · % 

                                  � �% · �& · +�� · ��+(� · 5� · %� � 6. 
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In view of this lemma, it is obvious that every loop-isotope of a Moufang loop is an inverse property loop. More interesting is 
the fact, that the converse is also true. We can now prove our theorem. 

Proof.              

Mengue Mengue and Ajala [4] proved that the derivatives of a loop are loops using that result, lemma 2 and definition 3.1 for 
Moufang loops our proof is complete. 
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