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Abstract

Modelling and predicting nonlinear processes are more complicated, especially
where the parameters change through time in a pre-determined way. In this paper,
attempts are made to build an appropriate model for the prediction of a nonlinear
dynamical system by using hierarchically structured model. The mathematical
representation of the process, in this context, is by a set of linear stochastic differential
equations (SDE) with unique solutions. The problem of realization is that of
constructing the dynamical system by looking at the problem of scientific model
building. In model building, one must be able to calculate the dynamical behaviour of
the system using mathematical model with an accuracy which is at least within the
tolerances allowable under control. For simplification, individual risks policies
suggestive enough to demonstrate relevance of the method in more realistic insurance
modelswasillustrated in simple context so that the basic ideas can be easily grasped.
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Introduction:

The real world generally changes through time afteénobehaves in a nonlinear way. Nonlinear processe more
complicated, especially where the parameters chamgrigh time in a pre-determined way. They arehewiatically
interesting and sometimes work well in practice.@Wlhe processes or experiment is a dynamical mystee traditional
approach in the physical sciences has been to nfimahelfirst principles; that is, to work upwardeifn known physical laws
to make a model of the system [1].

Most systems cannot be represented by small clfised-equations and one of the lessons learnt frioenstudy of
nonlinear dynamics is that it is often not posstblenodel real world systems by closed-form modetsentially because of
sensitivity to initial conditions. Laws governinbet evolution of a system fix its future behaviogiven an initial state.
Evolution is therefore deterministic and givenialistate generates a unique evolutionary pathreMenerally, the extent to
which a nonlinear deterministic process retainspitsperties when corrupted by noise is also unclt@rst nonlinear
deterministic processes are chaotic since the swonlof the physical variables appears very diserde

Chaos, the science of non-linear systems, hasdadwnew tools and understanding that permits nioglémportant
processes that were previously thought to be unfable Chaotic time series prediction studies tppliaation of these
techniques to the induction of models for pseudwom sequences. The existence of a determinissiersythat exhibit
chaotic pseudo-randomness behaviour akin to inadtésm, and ordinarily associated with true randesmhas several
implications for data analysis [2]. Time seriesadthat seem random may in reality be chaotic. Gbdxehaviour arises
from certain types of non linear models, and adodsfinition is apparently random behaviour thageéserated by a purely
deterministic, non linear system.

One of the most exciting developments in receabth of differential equations is the discoveryttheatively simple
differential equations can have solutions which mreh more complicated than periodic and quassogiersolutions. A
differential equation is said to be chaotic if there bounded solutions which are neither periadicquassi periodic and
which diverge from each other locally [3]. An imniate corollary of the local divergence of nearbjuions is that one
losses predictive power in practical situationswideer, as chaotic behaviour leads to successiveesdying in a restricted
subspace. It is sometimes found that the domaattaiction has a strange geometric form (e.g. dfagtand this is called a
strange attractor [4]. In this paper, hierarchicabdelling approach is introduced for nonlinear dyital systems.
Hierarchical models have gained wide spread usgaitistics during the last few decades [5] and haesed to be useful
tools for modelling dynamic behaviour in large dimmnal state space[6] or exploring structuresimglicated
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data[7],[8],[9]. Hierarchical models are centrahtany current analysis of functional imaging datluding random effects
analysis, environmental processes[10],[11],[12]géographical information systems[13] and alsopi@dicting the spread
of ecological processes[14],[15]. Recent advancesamputational efficiency have allowed for the lempentation of
sophisticated hierarchical models [13],[14],[156]1

At the same time, such model specification allmw & more intuitive setting where identificationdaestimation of
probability distribution comes more naturally. Tierarchical approach is often a natural way to ehadsystem [12] and its
framework can generalize most of the standard niadetechniques used in classical statistical miaugl Hierarchical
model is often used to simplify modelling specifioas, account for uncertainties and use first gpiles in a series of
conditional models coherently linked together by probability rules [12].

Methodology

Hierarchically structured model is used in thisdy as a model source that allowed the realizatibthe estimated
probability distribution for our nonlinear dynamicsystem. The approach ensured the constructionestichation of a
complex joint distribution through a sequence afer and more intuitive conditional distributionsThe problem of
realization is that of constructing a dynamicaltsys by looking at the problem of scientific modeiilding. In model
building, one must be able to calculate the dynahti@haviour of a physical system using mathematiwzdel with an
accuracy which is at least within the tolerancésnable under control.

The mathematical model in this study arises whae tis continuousSuppose a scalar time ser{el{( t), t=1,2,...... N }

is a measurement on a chaotic dynamical systemhén state space. Differencing in discrete time cpweds to
differentiation in continuous time, so that appdisematural ways of trying to define a first —ordautoregressive (AR)
process in continuous time is by means of the gémguation

dX(t) _
ax(t) + “d = Z(1) 1)

where @ is a constant, an& (t) denotes continuous white noise. The solutiongiftérential equations are functions that

describe the evolution or dynamics of a real lifegess over a given period of time and can change drastically. For our
purposes, the randomness in the differential eguasiintroduced via an additional random noiseter

dX, = a(t, X,)dt +b(t, X, )dB, @)
where B = (B,,t =2 0) denotes Brownian motion, which is at the coretotisastic analysis. Furthea(t, X) takes care of
the drift of the process, whilg(t, X) describes the strength of the extraneous fluctnati@used by the Brownian motion. A
wealth of possible models can be arrived at fociigechoices of a(t, x) and b(t, xX) (17). A naive interpretation of (2)
assert that the changdX, = X,, 4 — X, is caused by a changdt of time, with factora(t, X,), in combination with a

changedB, = B, — B, of Brownian motion, with factob(t, X, ). Equation (2) can be interpreted as a stochadggial
equation

t
X, =X, +[a(sX,)ds+ [ b(s,X,)dB, O<ts<T 3)
0

Where the first integral on the right hand sida Riemann integral and the second one is@sttichastic integral. Equation
(3) is an I stochastic differential equation, and the drivprgcess of (3) is the Brownian motion B. Thus argjrsolution

to (3) is based on the path of the underlying Briawmotion. By takinga(t, x) =0 andb { x )= 1 the Brownian motion
in (3) is a diffusion process. The solution tolenstochastic differential equation can be derivethassolution of a partial

differential equation
X =X, +c[ X ds+of dB,  tO[0T] (4)

Equation (4) usually is referred to as Langevinagigum. In the physical literature, the random foein (4) is called additive
noise which is an adequate description of this phamon. Moreover, the Langevin equation in (4) imear 16 stochastic
differential equation (18). The langevin equation(4) is related to the world of time series anialydn intuitive form (4)
can be written as

dX, =cX,d, +odB, (5)
and formally settingd, =1 . Then
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X=X =cX +0(B.,,—B) (6)
or
Xy =X +Z,. @)
where ¢ = Cc+1 is a constant and the random variablts= 0 (B,,, — B,) constitute ani.i.d sequence ofN(0,07).

This is an autoregressive process of order one. This &messmodel can be considered as a discrete analogue of the
solution to the Langevin equation (4) and the langevin aquét a linear ité stochastic differential equation. Thelsistic

processX, follows a random walk and can be represented as
X, =c+X,_, +a 8
with a constantC and white noised, . If C is not zero then the variablex, - X, _,

called a random walk with a drift. By adopting Box and kirerf1976) model approach to time series analysis, model
identification, parameter estimation and diagnostic check wemgbfeaThe model identification according to Box and
Jenkins involved using differencing, ACF and PACF. The Boa Jenkins ARIMA models can be shown to be optimal and
provides a systematic approach to model selection, utilizingelhformation contained in the sample autocorrelaion (ACF)
and partial autocorrelation (PACF) functions. The ACF an@PAre meaningful only when applied to stationary series.

=c+a have a non zero mean and is

RESULTS
The empirical data shown in Table 1 is the daily claim occurrenbenitted to the secretariat of the Nigeria Insurance
Association (NIA) for the period 2007. The distributioihthe claim occurring at time revealed specific dynamic behgviou
which provides a better understanding of an insurance portfadr most dynamic system, difference equations are used to
model the evolution of the system with time, and measeinésnare assumed to be available at discrete times. The
examination of the time plot of Table 1 revealed greater vatiabiliclaims as shown in Fig 1.
The path of the model as depicted in Fig 1 is chaotic, mgakidifficult to define the path of the process. Thesddsen
structural changes were reduced by the use of hierarchicabs¢rastin Fig 2. The study modelled the transition rdtes®
state to another, and arrived at the probability of each enselintile. actual distribution is to be assessed using binomial
process over a small time interval, the Wiener process or Baownbtion is then the ideal limiting distribution ftite
random walk model. The structural model sets out to cagtarsalient features of a time series and these are apparent from
the nature of the series.
The study adopted this approach using the S-PLUS packagtharsdmple autocorrelations (ACF) function, the partial
autocorrelation (PACF) function for the claim Processes asrshovifable 3. The S-PLUS package used the Akaike
information criterion (AIC) to provide the best fit for @utoregressive model to a set of data. The values of the AIC
generally in S-PLUS are listed for the autoregressive modls,the smallest value of the AIC adjudged to be the most
appropriate. By the examination of the ACF, the PACF,thadAIC for claim processes suggests an autoregressive nfodel
order 1 as in Table 3. By fitting an AR (1) model for @laim Portfolio, the corresponding fitted autoregressiveehis

X, = 236+0.114X,_, + 3,

(0.066) (0.059)

The numbers in parentheses below the coefficients are standansl €he estimated prediction variadte = 0.009 and
95% confidence interval fo@ is given as
0.115+ t,4,(25)(0.059
(0.00064, 0.2306)
The ARIMA model diagnostic is as shown in Fig 3 withigas plots produced such as the standardized resichalaF
of the residuals, the PACF of the residuals. Aimosthalitlots are based on the examination of the residiaisy, — Y, ,

where 9t is the fitted value, or some function of the residuals.olerall test of model adequacy is provided by Ljung-Box

chi-squared statistics. These statistics also known as thdiBooe chi-square statistics contain what are known as the
portmanteau statistics with their associated p-values.

Discussion

Hierarchically structured model is used in this study asodeinsource that allowed the realization of the estimated
probability distribution for our nonlinear dynamicalsggm. The approach ensured the construction and estimatian of
complex joint distribution through a sequence of simgled more intuitive conditional distributions. The hierézah
structured model is based on the Markov property, whicHieémphat given the present state, the future of a system is
independent of its past. The study identified that an(&Rmodel is adequate and is a special case of our hierarchical
structured model.
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Table 1. Insurance Claims portfolio

Jan: 4469654, 991698, 1243344, 513000, 522473,0880044538, 610536, 900000,

573750, 2025000988,

542400, 2592000, 574536, 705682, 719059, 933038, &8 665766, 581487, 700000, 750000, 661000

Feb: 684068, 750988, 3401510, 1389917, 11135243%233036377, 2334479,

2208789, 1107032, 1050000,

691572, 612716, 537750, 1072512, 1312500, 838086831000, 10159375, 1516854, 500000, 7000000,

1682558, 1012500

March: 1700000, 899965, 513000, 3000000, 10664002690, 629803, 819500, 1923000, 720000, 1624500,
2183298, 1133930, 1680120, 1938070, 1163191

April:

1091250, 1327784, 3066729, 17093431, ®851612000, 586528, 6277603,

864374, 327892600(H%
738000

May:

678000, 577776, 869660, 501785, 77760009651260000, 1304394, 1800000, 1083598, 1177881143,

1298097, 1968740, 760089, 2700000, 4302997, 122448204, 1344823, 2588500, 3165761.

June:

532010, 1495237, 742808, 724693, 1176600000, 2109000, 810000, 699510, 531644, 966815136,

1230618, 3162224, 1081947, 666750, 1500000, 652508376, 4850000, 878500, 520600, 3298464,
1980000, 679115, 632591, 540000.

July:

627838, 723050, 504900, 2263523, 60600@9917, 1950000, 704660, 1000000, 2479351, 1481789
500000, 810000, 1408603, 1256584, 1620000, 54@ERARN69, 717039, 982816, 4250000, 700000.

Aug:

760000, 2353302, 546826, 531451, 823525,735, 1364993, 1030228, 1393273, 3244220, 1@B000
1044000, 24400000, 1075284, 1070244, 1197000, S5®3846, 4254817, 1162800, 24579269.

Sept:

1338750, 1338750, 6300000, 3179432, BW0891950, 4454095, 2307436, 559558, 559545, 2B3K38
2685354, 1246300, 1245983, 4884223, 857719, 566820125, 1648438, 832733, 3254900, 2061216,
1085797.

Oct:

5235988, 688500, 1411242, 2607147, 0630800000, 1620000, 1067600, 826350, 19829736
1381026, 6697192, 3265331, 3222164, 1238226, 8288B¥500, 14552619, 1121850, 842387, 728946,
3734997, 1341743, 546950, 1134488, 544266, 135H82AN02, 1851600, 1823018, 3054268.

Nov:

1048478, 1625570, 3886258, 3910305, 13332900000, 600750, 800000, 1026667, 144905881 Ah
705093, 1792500, 2153730, 2920459, 643357, 7439582500, 565213, 5178084, 5161160, 2207540,
513359, 746971, 1882850, 2089548, 680400, 55324878, 1080000, 1346386, 27311939.

Dec:

500000, 1042321, 765000, 1344823, 7869339595, 3134790, 540510, 661500, 671700, 176800
3587542, 1051200, 1303154, 1298996, 544000, 17448%P7240, 3865360, 711461, 992062, 515800,
870795, 665000, 675000, 1080000, 3451391, 524846.

4.0
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Fig. 1 Sample Paths for the Claim Portfolio

Fig 2 Realization of claims using state space

hierarchically structured model

The time plot from the hierarchical state space is in Figure 2
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Table 2: The Hierarchical state spaces

4,3,2,1,1,4,2,2,2,1,4,1,1,4,1,22,2,1,2,22,2,2,4,3,3,2,4,4,4,2,2,1,3,3,2,4,4,3,1,4,3,3,3, 2,
1,4,3,4,2,2,3,2,3,4,3,3,3,3,3,3#4,2,1,2,2,4,3,2,2,1,2,1,2,2,3,3,3,3,3,3,2,4,4,3,2,3,4,4,1, 3,
2,2,3,4,4,2,2,1,2,4,3,4,3,2,3,4,12,1,4,3,2,2,1,2,2,1,4,2,3,3,4,3,1,2,3,3,3,1,1,2,2,4,2, 2,4, 1,
1,2,1,3,3,3,4,3,3,4,3,3,3,3,2,4,3,3,4,4,2,2,4,4,1,1,4,4,3,3,4.,2,3,2,4,4,3,4,2,3,4,3, 2,33, 2,
3,1,3,4,4,4,3,2,3,3,3,2,2,4,3,11,33,1,3,3,4,3,3,4,4,3,4,2,2,3,8213,4,4,2,4,1,1,4,4,4,1, 2, 3, 4, 2,
1,2,3,3,3,4,1,3,2,3,2,3,4,1,2,43%,3,3,1,3,4,4,2,2,1,2,2, 2, 3, 4,

Table 3: Sample ACF, PACF and AIC for Claims Portfdio

ARIMA Model Diagnostics: Claimsl.ts

Lag K
ACF PACF AIC Plot of Standardized Residuals
1 0.1144 0.1144 0.000 -
2 -0.0584 -0.0724 0.502 o
3 -0.0010 0.0168 2.422 -
4 -0.0415 -0.0488 3.743
5 0.0637 0.0775 4.026 0 * 0 150 0 0
6 0.0141 -0.0100 5.997 E ACEF Plot of Residuals
7 0.0173 0.0284 7.767 2
8 0.1354 0.1293 4.965 | B P T i
9 -0.0315 -0.0575 6.021
10 -0.0588 -0.0354 7.664 <
11 0.0560 0.0722 8.177 s ° 1 1 o ®
12 0.0069 -0.0213 10.048 PACF Plot of Residuals
13 -0.0306 -0.0420 11.544 &
14 0.0170 0.0255 13.360 | ‘ | L - [
15 0.0190 0.0204 15.241 T 7 | | | |
16 -0.0365 -0.0707 15.0813 R At
17 -0.0052 0.0229 17.663 ° " ® “ ®
18 -0.0185 -0.0092 19.639 P-valuesn of Ljung-Box Chi-Squared Statistics
19 -0.0024 -0.0237 21.479 3 °
20 0.0172 0.0193 23.372 —;’
ARIMA(1,0,0) Model with Mean 0
Fig 3 ARIMA Model Diagnostic for the Claims Portfc
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