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Abstract 
 
Modelling and predicting nonlinear processes are more complicated, especially 

where the parameters change through time in a pre-determined way. In this paper, 
attempts are made to build an appropriate model for the prediction of a nonlinear   
dynamical system by using hierarchically structured model. The mathematical 
representation of the process, in this context, is by a set of linear stochastic differential 
equations (SDE) with unique solutions. The problem of realization is that of 
constructing the dynamical system by looking at the problem of scientific model 
building.  In model building, one must be able to calculate the dynamical behaviour of 
the system using mathematical model with an accuracy which is at least within the 
tolerances allowable under control. For simplification, individual risks policies 
suggestive enough to demonstrate relevance of the method in more realistic insurance 
models was illustrated in simple context so that the basic ideas can be easily grasped.  
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Introduction: 
 

The real world generally changes through time and often behaves in a nonlinear way. Nonlinear processes are more 
complicated, especially where the parameters change through time in a pre-determined way. They are mathematically 
interesting and sometimes work well in practice. When the processes or experiment is a dynamical system, the traditional 
approach in the physical sciences has been to model from first principles; that is, to work upwards from known physical laws 
to make a model of the system [1]. 

Most systems cannot be represented by small closed-form equations and one of the lessons learnt from the study of 
nonlinear dynamics is that it is often not possible to model real world systems by closed-form models, essentially because of 
sensitivity to initial conditions. Laws governing the evolution of a system fix its future behaviour, given an initial state. 
Evolution is therefore deterministic and given initial state generates a unique evolutionary path.  More generally, the extent to 
which a nonlinear deterministic process retains its properties when corrupted by noise is also unclear. Most nonlinear 
deterministic processes are chaotic since the evolution of the physical variables appears very disordered. 

 Chaos, the science of non-linear systems, has provided new tools and understanding that permits modeling important 
processes that were previously thought to be unmodelable. Chaotic time series prediction studies the application of these 
techniques to the induction of models for pseudo-random sequences. The existence of a deterministic system that exhibit 
chaotic pseudo-randomness behaviour akin to indeterminism, and ordinarily associated with true randomness has several 
implications for data analysis [2].  Time series data that seem random may in reality be chaotic. Chaotic behaviour arises 
from certain types of non linear models, and a loose definition is apparently random behaviour that is generated by a purely 
deterministic, non linear system.  

 One of the most exciting developments in recent theory of differential equations is the discovery that relatively simple 
differential equations can have solutions which are much more complicated than periodic and quassi periodic solutions.  A 
differential equation is said to be chaotic if there are bounded solutions which are neither periodic nor quassi periodic and 
which diverge from each other locally [3]. An immediate corollary of the local divergence of nearby solutions is that one 
losses predictive power in practical situations. However, as chaotic behaviour leads to successive values lying in a restricted 
subspace. It is sometimes found that the domain of attraction has a strange geometric form (e.g. fractals), and this is called a 
strange attractor [4]. In this paper, hierarchical modelling approach is introduced for nonlinear dynamical systems. 
Hierarchical models have gained wide spread use in statistics during the last few decades [5] and have proved to be useful 
tools for modelling dynamic behaviour in large dimensional state space[6] or exploring structures in complicated  
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data[7],[8],[9]. Hierarchical models are central to many current analysis of functional imaging data including random effects  
analysis, environmental processes[10],[11],[12], in geographical information systems[13] and also for predicting the spread 
of ecological processes[14],[15]. Recent advances in computational efficiency have allowed for the implementation of 
sophisticated hierarchical models [13],[14],[15],[16].  

 At the same time, such model specification allow for a more intuitive setting where identification and estimation of 
probability distribution comes more naturally. The hierarchical approach is often a natural way to model a system [12] and its 
framework can generalize most of the standard modelling techniques used in classical statistical modelling. Hierarchical 
model is often used to simplify modelling specifications, account for uncertainties and use first principles in a series of 
conditional models coherently linked together by simple probability rules [12]. 
 
Methodology 
Hierarchically structured   model is used in this study as a model source that allowed the realization of the estimated 
probability distribution for our nonlinear dynamical system. The approach ensured the construction and estimation of a 
complex joint distribution through a sequence of simpler and more intuitive conditional distributions.  The problem of 
realization is that of constructing a dynamical system by looking at the problem of scientific model building.  In model 
building, one must be able to calculate the dynamical behaviour of a physical system using mathematical model with an 
accuracy which is at least within the tolerances allowable under control.  
The mathematical model in this study arises when time is continuous. Suppose a scalar time series { ( ), 1, 2,......, }t t NΧ =  

is a measurement on a chaotic dynamical system in the state space. Differencing in discrete time corresponds to 
differentiation in continuous time, so that apparently natural ways of trying to define a first –order autoregressive (AR) 
process in continuous time is by means of the general equation 
                    

                  
( )

( )       Z(t) 
dX t

aX t
dt

+ =                                                               (1) 

where a  is a constant, and ( )Z t  denotes  continuous white noise. The solutions of differential equations are functions that 

describe the evolution or dynamics of a real life process over a given period of time and can change quite drastically. For our 
purposes, the randomness in the differential equation is introduced via an additional random noise term 
 

                ( , ) ( , )t t t tdX a t X dt b t X dB= +                                                     (2) 

where ( , 0)tB B t= ≥  denotes Brownian motion, which is at the core of stochastic analysis. Further, ( , )a t x takes care of 

the drift of the process, while( , )b t x describes the strength of the extraneous fluctuations caused by the Brownian motion.  A 

wealth of possible models can be arrived at for specific choices of  ( , )a t x  and ( , )b t x  (17).  A naive interpretation of (2) 

assert that the change t t dt tdX X X+= −  is caused by a change dt of time, with factor ( , ),ta t X  in combination with a 

change t t dt tdB B B+= − of Brownian motion, with factor ( , ).tb t X  Equation (2) can be interpreted as a stochastic integral 

equation 

               
0 0

0

 ( , ) ( , )
t

t

t s s sX X a s X ds b s X dB= + +∫ ∫          0 t T≤ ≤                  (3) 

Where the first integral on the right hand side is a Riemann integral and the second one is an Itŏ stochastic integral. Equation 
(3) is an Itŏ stochastic differential equation, and the driving process of (3) is the Brownian motion B. Thus a strong solution 
to (3) is based on the path of the underlying Brownian motion. By taking ( , ) 0 and ( , ) 1,a t x b t x= =  the Brownian motion 

in (3) is a diffusion process.  The solution to an Itŏ stochastic differential equation can be derived as the solution of a partial 
differential equation 

              0 0 0

t t

t s sX X c X ds dBσ= + +∫ ∫            [0, ]t T∈                                             (4)  

Equation (4) usually is referred to as Langevin equation. In the physical literature, the random forcing in (4) is called additive 
noise which is an adequate description of this phenomenon. Moreover, the Langevin equation in (4) is a linear Itŏ stochastic 
differential equation (18). The langevin equation in (4) is related to the world of time series analysis.  In intuitive form (4) 
can be written as  

   t t t tdX cX d dBσ= +                                                                                      (5) 

and formally setting 1td =  . Then 
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1 1( )t t t t tX X cX B Bσ+ +− = + −                                                                    (6) 

or   
   

1t t tX X Zϕ+ = + .                                                                                          (7) 

where 1cϕ = +  is a constant and the random variables 1( )t t tZ B Bσ += −  constitute an  . .i i d  sequence of 2(0, )N σ .  

This is an autoregressive process of order one.  This time series model can be considered as a discrete analogue of the 
solution to the Langevin equation (4) and the langevin equation is a linear itô stochastic differential equation.  The stochastic 

process tX follows a random walk and can be represented as  

   
1t t tX c X a−= + +                                                                                                (8) 

with a constant  c   and white noise ta .  If c  is not zero then the variables, 
1t tX X −− = 

tc a+   have a non zero mean and is 

called a random walk with a drift. By adopting Box and  Jenkin (1976)  model approach to time series analysis, model 
identification, parameter estimation and diagnostic check were feasible. The model identification according to Box and 
Jenkins involved using differencing, ACF and PACF. The Box and Jenkins ARIMA models can be shown to be optimal and 
provides a systematic approach to model selection, utilizing all the information contained in the sample autocorrelaion (ACF) 
and partial autocorrelation (PACF) functions. The ACF and PACF are meaningful only when applied to stationary series. 
 
RESULTS 
 The empirical data shown in Table 1 is the daily claim occurrence submitted to the secretariat of the Nigeria Insurance 
Association (NIA) for the period 2007. The distribution of the claim occurring at time revealed specific dynamic behaviour, 
which provides a better understanding of an insurance portfolio. For most dynamic system, difference equations are used to 
model the evolution of the system with time, and measurements are assumed to be available at discrete times. The 
examination of the time plot of Table 1 revealed greater variability of claims as shown in Fig 1.  
The path of the model as depicted in Fig 1 is chaotic, making it difficult to define the path of the process. These sudden 
structural changes were reduced by the use of hierarchical structure as in Fig 2. The study modelled the transition rates of one 
state to another, and arrived at the probability of each ensemble. If the actual distribution is to be assessed using binomial 
process over a small time interval, the Wiener process or Brownian motion is then the ideal limiting distribution for the 
random walk model.  The structural model sets out to capture the salient features of a time series and these are apparent from 
the nature of the series.  
The study adopted this approach using the S-PLUS package and the sample autocorrelations (ACF) function, the partial 
autocorrelation (PACF) function for the claim Processes as shown in Table 3. The S-PLUS package used the Akaike 
information criterion (AIC) to provide the best fit for an autoregressive model to a set of data. The values of the AIC 
generally in S-PLUS are listed for the autoregressive models, with the smallest value of the AIC adjudged to be the most 
appropriate. By the examination of the ACF, the PACF, and the AIC for claim processes suggests an autoregressive model of 
order 1 as in Table 3. By fitting an AR (1) model for the Claim Portfolio, the corresponding fitted autoregressive model is  

                         ttt aXX ++= −1114.036.2
 

                                (0.066)     (0.059) 

The numbers in parentheses below the coefficients are standard errors. The estimated prediction   variance2ˆ 0.009σ =  and 
95% confidence interval for ϕ  is given as  

                            )059.0)(5.2(115.0 283t±  
                               (0.00064, 0.2306) 
The ARIMA model diagnostic is as shown in Fig 3 with various plots   produced such as the standardized residuals, the ACF 

of the residuals, the PACF of the residuals. Almost all the plots are based on the examination of the residuals,ˆ ˆ ,t t te y y= −  

where ˆty is the fitted value, or some function of the residuals. An overall test of model adequacy is provided by Ljung-Box 

chi-squared statistics. These statistics also known as the Box-Pierce chi-square statistics contain what are known as the 
portmanteau statistics with their associated p-values.  
 
Discussion 
Hierarchically structured   model is used in this study as a model source that allowed the realization of the estimated 
probability distribution for our nonlinear dynamical system. The approach ensured the construction and estimation of a 
complex joint distribution through a sequence of simpler and more intuitive conditional distributions. The hierarchical 
structured model is based on the Markov property, which implies that given the present state, the future of a system is 
independent of its past.  The study identified that an AR (1) model is adequate and is a special case of our hierarchical 
structured model. 
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Table 1.  Insurance Claims portfolio 

Jan: 4469654, 991698, 1243344, 513000, 522473, 3800000, 744538, 610536, 900000,     573750, 2025000, 570978, 
542400, 2592000, 574536, 705682, 719059, 933038, 696173, 665766, 581487, 700000, 750000, 661000               

Feb: 684068, 750988, 3401510, 1389917, 1113524, 623396, 3036377, 2334479,  2208789, 1107032, 1050000, 
691572, 612716, 537750, 1072512, 1312500, 838080, 12831900, 10159375, 1516854, 500000, 7000000, 
1682558, 1012500 

March: 1700000, 899965, 513000, 3000000, 1066400, 5772690, 629803, 819500, 1923000, 720000, 1624500, 
2183298, 1133930, 1680120, 1938070, 1163191 
April:   1091250,  1327784, 3066729, 17093431, 645188, 612000, 586528, 6277603,   864374, 3278926, 1260000, 

738000 
May:    678000, 577776, 869660, 501785, 777600, 965037, 1260000, 1304394, 1800000, 1083598, 1177808, 1310143, 

1298097, 1968740, 760089, 2700000, 4302997, 1224172, 643204, 1344823, 2588500, 3165761. 
June:      532010, 1495237, 742808, 724693, 1176641, 7000000, 2109000, 810000, 699510, 531644, 966845, 2618136, 

1230618, 3162224, 1081947, 666750, 1500000, 652500, 529376, 4850000, 878500, 520600, 3298464, 
1980000, 679115, 632591, 540000. 

July:      627838, 723050, 504900, 2263523, 606000, 1729917, 1950000, 704660, 1000000, 2479351, 1417898, 
500000, 810000, 1408603, 1256584, 1620000, 540000, 522969, 717039, 982816, 4250000, 700000. 

Aug:       760000, 2353302, 546826, 531451, 823125, 515735, 1364993, 1030228, 1393273, 3244220, 1080000, 
1044000, 24400000, 1075284, 1070244, 1197000, 995663, 761846, 4254817, 1162800, 24579269. 

Sept:      1338750, 1338750, 6300000, 3179432, 800650, 891950, 4454095, 2307436, 559558, 559545, 2063844, 
2685354, 1246300, 1245983, 4884223, 857719, 566820, 631125, 1648438, 832733, 3254900, 2061216, 
1085797. 

Oct:        5235988, 688500, 1411242, 2607147, 1530000, 800000, 1620000, 1067600, 826350, 1982973, 576000, 
1381026, 6697192, 3265331, 3222164, 1238226, 828800, 1657500, 14552619, 1121850, 842387, 728946, 
3734997, 1341743, 546950, 1134488, 544266, 1351500, 562002, 1851600, 1823018, 3054268. 

Nov:       1048478, 1625570, 3886258, 3910305, 1313125, 2900000, 600750, 800000, 1026667, 14490580, 563170, 
705093, 1792500, 2153730, 2920459, 643357, 7435587, 542500, 565213, 5178084, 5161160, 2207540, 
513359, 746971, 1882850, 2089548, 680400, 553248, 914973, 1080000, 1346386, 27311939. 

Dec:        500000, 1042321, 765000, 1344823, 746971, 1339595, 3134790, 540510, 661500, 671700, 1768000, 
3587542, 1051200, 1303154, 1298996, 544000, 1744652, 3017240, 3865360, 711461, 992062, 515800, 
870795, 665000, 675000, 1080000, 3451391, 524846. 

 

 

 

 

 

The time plot from the hierarchical state space is in Figure 2 
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hierarchically structured model 

Fig. 1 Sample Paths for the Claim Portfolio 
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Table 2:  The Hierarchical state spaces   

4, 3, 2, 1, 1, 4, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 2,2, 2, 2, 4, 3, 3, 2, 4, 4, 4, 3, 3, 2, 2, 1, 3, 3, 2, 4, 4, 3, 1, 4, 3, 3, 3, 2, 
1, 4, 3, 4, 2, 2, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 1, 2, 2, 4, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 4, 3, 2, 3, 4, 4, 1, 3, 
2, 2, 3, 4, 4, 2, 2, 1, 2, 4, 3, 4, 3, 2, 3, 2, 1, 4, 2, 1, 4, 3, 2, 2, 1, 2, 2, 1, 4, 2, 3, 3, 2, 3, 4, 3, 1, 2, 3, 3, 3, 1, 1, 2, 2, 4, 2, 2, 4, 1, 
1, 2, 1, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 4, 4, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 4, 2, 1, 2, 3, 2, 4, 4, 3, 4, 2, 3, 4, 3, 2, 3,3, 2, 
3, 1, 3, 4, 4, 4, 3, 2, 3, 3, 3, 2, 2, 4, 3, 1, 3, 1, 3, 1, 3, 3, 4, 3, 3, 4, 4, 3, 4, 2, 2, 3, 4, 1, 2, 3, 4, 4, 2, 4, 1, 1, 4, 4, 4, 1, 2, 3, 4, 2, 
1, 2, 3, 3, 3, 4, 1, 3, 2, 3, 2, 3, 4, 1, 2, 2, 3, 4, 3, 3, 3, 1, 3, 4, 4, 2, 2, 1, 2, 2, 2, 3, 4, 1 

    

Table 3: Sample ACF, PACF and AIC for Claims Portfolio 

Lag K  
ACF 

 
PACF 

 
AIC 

1 0.1144 0.1144 0.000 
2 -0.0584 -0.0724 0.502 
3 -0.0010 0.0168 2.422 
4 -0.0415 -0.0488 3.743 
5 0.0637 0.0775 4.026 
6 0.0141 -0.0100 5.997 
7 0.0173 0.0284 7.767 
8 0.1354 0.1293 4.965 
9 -0.0315 -0.0575 6.021 
10 -0.0588 -0.0354 7.664 
11 0.0560 0.0722 8.177 
12 0.0069 -0.0213 10.048 
13 -0.0306 -0.0420 11.544 
14 0.0170 0.0255 13.360 
15 0.0190 0.0204 15.241 
16 -0.0365 -0.0707 15.0813 
17 -0.0052 0.0229 17.663 
18 -0.0185 -0.0092 19.639 
19 -0.0024 -0.0237 21.479 
20 0.0172 0.0193 23.372 
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