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Abstract

In this paper, recursive and adaptive backstepping techniques are respectively
employed to design control functions for chaos control and synchronization of the
generalized Lorenz systems (GLS) of Oldroyd-B fluids with fully unknown parameters.
The designed recursive backstepping nonlinear controllers are capable of stabilizing the
chaotic GLS at any position. The designed adaptive backtstepping controllers are
effective in globally synchronizing two identical GLS evolving from different initial
conditions. The feasibility of the designed controllers is illustrated with numerical
simulations.
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1.0 Introduction

Nature is intrinsically nonlinear. So it is not prsing that most of the systems encountered inréa world are
nonlinear. And what is interesting is that nonlinggstems can exhibit a variety of dynamical betwans including chaos. In
both scientific and technological realms, chaos tmay desirable trait in some systems and can fieedpn other areas of
research. So, intensive research activities hawn levoted to this area of study; and various dyceinphenomena
including, bifurcation analysis, chaos control, @hasynchronization, time series analysis, basinrtétion leading to
multistability have been studied and reported esitety in the literatures. For a more detailed ammprehensive
description of some of these dynamical phenomerappbed to physical, biological, and chemical eyss, the reader can
refer to the book by Strogatz [1]

The year 1990 witnessed the publication of two sempapers [2, 3]. Promising wide applications idigtshe traditional
scope of chaos and nonlinear dynamics researcée the papers immediately received a great deattefition and have led
to the establishment of two active areas of re¢ea®n one hand, chaos control refers to manipatire dynamical
behaviours of a chaotic system in which the god isuppress chaos when it is harmful or to enhanceeate chaos when it
is beneficial. Chaos synchronization on the othardy deals with the task of enabling the dynansgakchrony of several
connected chaotic systems by means of control tgeas or through specifically designed couplingfmations. The idea
of chaos control have been shown to have its ofigcontrol theory, synchronization of chaos hashesed somewhat in its
own right. Research efforts [4 - 6] showed that pheblem of chaos synchronization could be assediatith nonlinear
control theory. This unifies the study of chaostooirand chaos synchronization under the sameaubri

In view of its potential applications, especialtydhemical reactions, power converters, biologsyatems, information
processing, secure communication and surveillancariety of techniques have been proposed fosyhehronization and
control of chaos in both low-dimensional and higmensional systems. Some of this control approadhekide
backstepping control [7 — 11], linear state confd® — 14], variable substitution control [15 — 1@ktive control [18],
sinusoidal error feedback control [19] etc. Outdtag among these techniques is the backsteppingat@pproach which
has been shown to possess many advantages ovecatitel methods.
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The backstepping nonlinear control technique igsiesnatic design approach which consists in a st@iprocedure
that skillfully interlaces the choice of Lyapunounttion with the control. It has the ability to #&ve global stability,
tracking, and transient performance for a broadsclaf strict feedback nonlinear systems [20, 20iftHermore, it has the
advantages of applicability to a variety of chadystems whether they contain external excitationat; needs only one
controller to achieve synchronization between twaatic systems, thereby reducing controller coniplexhere are no
derivatives in the controller [20]; the controliersingularity free from the nonlinear term of qrattt type , gives flexibility
to construct a control law which can be extendedhigher dimensional chaotic systems, and the clismg system is
globally stable [21].

By utilizing the classical Lorenz system [22] whietas originally derived from the study of RayleiBbnnard
convection, Khayat [23, 24] reported Rayleigh-Bednidiermal convection of viscoelastic fluids usi@igroyd-B fluids to
obtain a four-dimensional nonlinear system whickctibes some mechanical properties of some polgrfleids. However,
Khayat's system [23,24] was derived by severe tion of conservation equations. In order to actdonthe physical
meanings of the variables of the system, Yang amouZ25] derived a new four-dimensional systeme @eneralized
Lorenz System (GLS) of the Oldroyd-B fluids - irtlearer and more concise way; and the system wagrsto exhibit rich
dynamical behaviours including chaos, limit cycladaHopf bifurcation. It is well known that undensting the
synchronization behaviour of coupled or driven kesimirs is very relevant for various scientific agnlgineering applications,
and in particular, its diverse applications rangiram secure communications to the monitoring ofayical systems and
control [26,27] cannot be overemphasized. To th& bé our knowledge, chaos control and synchromnatlynamics of
GLS with fully unknown parameters have not beeroregul in the literature. The aims of the presemepare therefore; to
design via recursive backstepping technique, neatirtontrol functions that can stabilize the cla@®LS at any position;
and to design via adaptive backstepping approadfinaar controllers that can synchronize the GL&ully unknown
parameters.

The rest of the paper is structured as followghinfollowing section, we give a brief descriptiohthe model that we
studied in this paper. Section 3 presents a n@@lrsive nonlinear controller with numerical sinida and section 4
presents adaptive synchronization controller wibhr&sponding parameter update laws to synchromimeGLS evolving
from different initial conditions as well as nuneai simulations results that demonstrate the effecess of the designed
controllers and the paper is concluded in section 5

2.0 Model Description

The GLS was derived from the classical Lorenz systé Rayleigh-Bennard thermal convection of Oldrd/dluids in
a closed loop. The GLS can be described by theviitig set of autonomous differential equations [25]

X = p(y—w)

=rX-y-xz
Y y (1)
Z=-z+Xxy

w=m(x—w) + pn(y - w)]

where p is the counterpart of the Prandtl numberafdéully treated convection problem, r is the cmupart for Rayleigh
number, Deborah number, m, is a measure of retaxditne of the fluid relative to the characteridiime of this problem
and Deborah number, n, is a measure of retardaitiom of the fluid relative to the characteristiési¢. The model is
considered as a new chaotic system since it hadti@ttor that is completely different from the plgy Lorenz [22], Chen
[28], Lu [29], Rossler [30] attractors; and refleetonlinear characteristics of thermal convectib®troyd-B fluids in a
closed loop.

In Ref. [25], Yang and Zhou showed that the valfes and n greatly influence the dynamics of theSGEor example,
m was shown to precipitate the onset of periodiab®ur while n impedes the onset of chaotic dyrarm the system. The
GLS governed by Eqg. 1 has been shown to exhillitvarieties of dynamical behaviour including chaatiotion - depicted
in Fig. 1 - with the following parameter settingsl®, r =20 and m = n =0.1

3.0 Chaos Control in GLS

3.1Design of the recursive backstepping controllers
Let us express system (1) in the following form:
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X = p(y = W) +u(t)

S t
y=rX—y=xz+u,(t) @

2:—z+xy+u3(t)

w=m(x=w) + pn(y —w)] +u,(t)
where (t), i=1,2,3,4 are control inputs to be determisadh that the state variables x,y,z and w of sy§®ran take
desired valuesgxyy, Zg and w; respectively. We define the error states betwberstate variables and desired values as:

& =X"%
€& =Y~ Yy 3)
€ =Z—-2
& =W~ W
In order to design control functiong ix1,2,3,4, that can control system (2), let
X, = f(t)
Yo = C&
— 4)
Zy =8 TCE

W, =C,€ +Cs€, +CeE,

where ¢ i=1,2,...6 are arbitrary control parameters to basein appropriately. By substituting (4) into ()eaeadily
obtains the following error dynamics:

e = p(e, +G6, ~&, ~C,8 ~C8, —C,) ~ f (1) +uy(t)

e =r(e +f(t)-(g +ce)~ (g + f (D)) +C6 +Cg) ~Cet+U,(t)

€. =—e,~C6 —Ce, +(g + F(1))(§, +C.6) ~C,ex—C,€, +Ut) (5)
ev =m{(e, + f(1) —&, —C,6, ~Cs8, ~Ce) + P, +CE, ~6, ~C,8, ~Cs, ~Ce&,)} -

C, € ,~C e —Cger+U,(t)
In order to stabilize the error system (5) at theildrium position, let us consider a Lyapunov dtian of the form
1
Vv :E(kxef +k,e +kel +k,e7) ©6)

where k, i=x,y,z,w , are positive constants. The differaindf the Lyapunov function along the trajectofitlte error system
(5) is

V =keg e+tke et+ke e+k.ze, e @)
To satisfy the condition for asymptotic stabilitftbe error dynamics (5) necessary for controlithgos , we substitute (5)
into (7) and choose,u=1,2,3,4 such that the derivative of the Lyapufunction is negative definite as follows:

w(t) = f(t) - p(e, +ce, —e,~C& ~C, ~C&,) &,
U (1) =c e+ (g + f(D)(e, +C8 +Ch)) +e, +Cg —r(g + f (1) g,
U (1) =C, e+ e+ (6, +C 8, +Cg,) — (g + T (1))(g, +Cg) —&, 8)

U, (t) :C4éx+05éy+06éz_”{(e>< +f(t) -e,—C,e —Ce, —Cs,) +
pn(e, +ce —e,—C,6 —CkL, —CL) -8,
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We have observed from the results of computatiansed out, that system (2) is effectively contdlwith only g =g =1
and so we sebe ¢, = G = ¢ = 0 which simplify the controllers in (8) to

u(t)= f(t)- p(e, +e, —e,) - &

(1) =ecte +e, +(e + F()E +e)-r(e + () -e, o

us() =ey+e, +e - (g + f(1))(e +6,) €,
u,(t) =-m(f(t) +e —e,) + pn(e +e,—€,] -8,

3.2Numerical results

In this sub-section, we will show numerical simidatresults to demonstrate the feasibility of tlesigned controllers.
Using the Fourth order Runge-Kutta routine withdistep of 0.001 and initial conditions (x, y, z,#{0.8, 0.4, -0.8, -0.2),
and fixing the parameter values of p, r, m, and mdig. 1 to ensure chaotic dynamics of the staréables, we solved
system (2) with the controllers, = 1,2,3,4 as defined in (9). The state trajpctd the system depicts irregular pattern
when the controllers are deactivated and whendhg&allers are switched on at t=50, the state Bamare controlled to the
equilibrium position. We note that the controller(9) is capable of controlling the dynamics of dhaotic GLS (i.e. EqQ. 2)
to stabilize it at any positiof(case f(t) =) and where = 0, the system becomes stabilized at the origin.

Fig. 1: Three dimensional phase portrait of the genemlizzenz system with the following parameter
settings: p=10, r=20, m= 0.1 and n=0.1.
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Figure 2: Controlled chaotic vibrations of the 4D GLS. Catdrhave been activated & 50.
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4 Synchronization of Generalized Lorenz System
Here, we examine the synchronization dynamics o6 @ia adaptive backstepping technique.

4.1 Design of backstepping controller
In order to achieve the synchronization behaviaineen two GLS evolving from different initial catidns, the GLS in (1)
is expressed as master:

Xl = p(y, —wW,)
Yl =X -y, — Xz, @)
Z =7, t XY,
W = m{(x, = w) + pn(y; = wy)]
and slave
XZ = pl(yz - Wz) + Ul(t)
o o ot
Yo =1X, =Y, = X,Z,HU 1) 3)

Z.2 ==Z, + XY, HULt)

W, = M(X, —W,) + pnyy,—w)] +u (1)

where Y (i=1,2,3,4) are control functions to be determiaed p, r;, My,n; are uncertain parameters to be estimated in the
response system . In what follows, an effectiveptida controller is designed to achieve global chsynchronization
between two GLS with fully unknown parameters.

We define error vector as

€ =X ~Xy6,=Y,mY€3=2,72,€6,=W,~W
eE=p—-p.&g=r-reg=m-meg=n-n

By subtracting Eq. (2) from Eq. (3) and using tleéirdtion of error vector in Eq. (4), one readilptains the following error
system:

é.l. = ep(y2 - Wz) + a(ez - e4) + Ul(t)

(4)

%I = X6 tI€ ~€,-€€;~XL;—2L,+V ﬁt)

€ =66, + ylel+ Xe,— eg+ v 3(t) (5)
&, =&,l(e,€, + e, +ne, +np)(y, —W,) +(x, —w,)] +ni(e,e, + pe, +ne)(y, —w,)
+npe, +€ - e4(np +1)] +U4(t)

The goal of the control is to find an effective trofler U, , i =1, 2, 3, 4, with parameter update laws siett the response

system (3) can globally and asymptotically syncir@nmvith the drive system (2). Let us assume a lpap function of the
form:

V=l relrelvelrel el retr el ) ©

By inserting (5) into the time derivative of (6)ewbtain the following
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V= el{a(ez _eA) +U1(t)} +e{z ré;—€,= €L ;= XE;3~ Z?1+U(2)} +
%{elez Ty tXe,~€e;tu gt)} + e{A th npe ,te 1'( np4)] +

) ) . 7
v, +efepHe+me)(y,-w)} +€ e+x8, +¢, ent v

e,l(ee, + pe, +ne, +np)(Y, —W,) + (X, ~W,)I} +ef en+me,[e, + p(y, —w,)]}

If the controIIersUi ,i=1, 2, 3, 4, are chosen as follows:
v =ale -e,)-e

U, =€ —-re+tee;+xXg;+zg,-¢€,
U; =66, 6, Y€, —XE, €, (8)
v, =—mnpe, —me, +me,(np+1)-e,

and the parameter estimation update law as follows
ép =-e, — (g + mne,)(y, —w,)
& =-§ ~ X8,
en = =6, ~€,[(&6, + P&, + e, +p)(y, ~wy) ~(x, ~w,)]

9)

€ =6 ~ me4[ep +p(y, —w,)]
then the derivative of the Lyapunov function if & negative definite and according to Lassalebyasawa theorem [31 ],
the error dynamics will converge to zergl — , While the equilibrium, (0,0,0,0), remains glolgadisymptotically stable.
This theoretical result implies that the GLS syst@ywould be driven to the equilibrium statl = @

4.2 Numerical Results
Utilizing the fourth-order Runge-Kutta routine witime step of 0.001, r = 20, p = 10, m = 0.1, n¥#&nd the initial
conditions of the drive and response systems apeotively set as;x 0.1, = 0. 2, 2= 0.4, wl = 0.6 andx2.0, y= 4.0,

2,=0.8, w = 0.6 respectively. When the COHtI‘O”Eﬂ'ﬁ(t) (i=1,2,3,4) are deactivated, a plot of averagere

(e= \/ef + %2 + e§ + ef ) against time (see Fig. 3) reveals irregular pattkeat is comparable to the size of the attractor.
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o
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Fig.3: Time series of the generalized Lorenz system whermontrollers /), (t) (i =1,2,3,4) were deactivated.
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When the controllers are activated at t = 50 asvahia Fig. 4. The simulations results show thatéh®er variables g e, &,
e, tend to zero, respectively. Fig.5 reveals thatastimated values of the unknown parameters cgaverp=10, r=0.3,
m=0.1, n=0.1 as+t ® respectively.
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Fig. 4: Error dynamics between two GLS with controllert\ated att 250
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Fig. 5: Estimate values of parameteks p, my, n, for the response system (2)

5. Conclusion

In this paper, control functions have been designedackstepping nonlinear control techniquegtierstabilization, control
and synchronization of the GLS of Oldroyd-B fluid$ie designed recursive nonlinear controllers wapable of stabilizing
the GLS at any chosen position. Based on Lyaputaiilgy theory, we designed two novel adaptivecyonization
controllers with corresponding parameter updates laglobally synchronize two GLS evolving fromfdient initial
conditions. The performance of the theoreticallgigieed controllers were verified by numerical siatidns which
confirmed the effectiveness of the proposed coetisl
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