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Abstract 
 
In this paper, recursive and adaptive backstepping techniques are respectively 

employed to design control functions for chaos control and synchronization of the 
generalized Lorenz systems (GLS) of Oldroyd-B fluids with fully unknown parameters. 
The designed recursive backstepping nonlinear controllers are capable of stabilizing the 
chaotic GLS at any position. The designed adaptive backtstepping controllers are 
effective in globally synchronizing two identical GLS evolving from different initial 
conditions. The feasibility of the designed controllers is illustrated with numerical 
simulations. 
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1.0 Introduction 
Nature is intrinsically nonlinear. So it is not surprising that most of the systems encountered in the real world are 

nonlinear. And what is interesting is that nonlinear systems can exhibit a variety of dynamical behaviours including chaos. In 
both scientific and technological realms, chaos may be a desirable trait in some systems and can be applied in other areas of 
research. So, intensive research activities have been devoted to this area of study; and various dynamical phenomena 
including, bifurcation analysis, chaos control, chaos synchronization, time series analysis, basin bifurcation leading to 
multistability have been studied and reported extensively in the literatures. For a more detailed and comprehensive 
description of some of these dynamical phenomena as applied to physical, biological, and chemical systems, the reader can 
refer to the book by Strogatz [1] 

The year 1990 witnessed the publication of two seminar papers [2, 3]. Promising wide applications outside the traditional 
scope of chaos and nonlinear dynamics research, these two papers immediately received a great deal of attention and have led 
to the establishment of two active areas of research. On one hand, chaos control refers to manipulating the dynamical 
behaviours of a chaotic system in which the goal is to suppress chaos when it is harmful or to enhance or create chaos when it 
is beneficial. Chaos synchronization on the other hand, deals with the task of enabling the dynamical synchrony of several 
connected chaotic systems by means of control techniques or through specifically designed coupling configurations. The idea 
of chaos control have been shown to have its origin in control theory, synchronization of chaos has evolved somewhat in its 
own right. Research efforts [4 - 6] showed that the problem of chaos synchronization could be associated with nonlinear 
control theory. This unifies the study of chaos control and chaos synchronization under the same rubric. 

In view of its potential applications, especially in chemical reactions, power converters, biological systems, information 
processing, secure communication and surveillance; a variety of techniques have been proposed for the synchronization and 
control of chaos in both low-dimensional and high-dimensional systems. Some of this control approaches include 
backstepping control [7 – 11], linear state control [12 – 14], variable substitution control [15 – 17], active control [18], 
sinusoidal error feedback control [19] etc. Outstanding among these techniques is the backstepping control approach which 
has been shown to possess many advantages over other control methods. 
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The backstepping nonlinear control technique is a systematic design approach which consists in a recursive procedure 

that skillfully interlaces the choice of Lyapunov function with the control. It has the ability to achieve global stability, 
tracking, and transient performance for a broad class of strict feedback nonlinear systems [20, 21]. Furthermore, it has the 
advantages of applicability to a variety of chaotic systems whether they contain external excitation or not; needs only one 
controller to achieve synchronization between two chaotic systems, thereby reducing controller complexity; there are no 
derivatives in the controller [20]; the controller is singularity free from the nonlinear term of quadratic type , gives flexibility 
to construct a control law which can be extended to higher dimensional chaotic systems, and the closed-loop system is 
globally stable [21]. 

By utilizing the classical Lorenz system [22] which was originally derived from the study of Rayleigh-Bennard 
convection, Khayat [23, 24] reported Rayleigh-Bennard thermal convection of viscoelastic fluids using Oldroyd-B fluids to 
obtain a four-dimensional nonlinear system which describes some mechanical properties of some polymeric fluids. However, 
Khayat’s system [23,24] was derived by severe truncation of conservation equations. In order to account for the physical 
meanings of the variables of the system, Yang and Zhou [25] derived a new four-dimensional system - the Generalized 
Lorenz System (GLS) of the Oldroyd-B fluids - in a clearer and more concise way; and the system was shown to exhibit rich 
dynamical behaviours including chaos, limit cycle and Hopf bifurcation. It is well known that understanding the 
synchronization behaviour of coupled or driven oscillators is very relevant for various scientific and engineering applications, 
and in particular, its diverse applications ranging from secure communications to the monitoring of dynamical systems and 
control [26,27] cannot be overemphasized. To the best of our knowledge, chaos control and synchronization dynamics of 
GLS with fully unknown parameters have not been reported in the literature. The aims of the present paper are therefore; to 
design via recursive backstepping technique, nonlinear control functions that can stabilize the chaotic GLS at any position; 
and to design via adaptive backstepping approach nonlinear controllers that can synchronize the GLS with fully unknown 
parameters. 

The rest of the paper is structured as follows. In the following section, we give a brief description of the model that we 
studied in this paper. Section 3 presents a novel recursive nonlinear controller with numerical simulation and section 4 
presents adaptive synchronization controller with corresponding parameter update laws to synchronize two GLS evolving 
from different initial conditions as well as numerical simulations results that demonstrate the effectiveness of the designed 
controllers and the paper is concluded in section 5. 
 
2.0 Model Description 
 

The GLS was derived from the classical Lorenz system of Rayleigh-Bennard thermal convection of Oldroyd-B fluids in 
a closed loop. The GLS can be described by the following set of autonomous differential equations [25]: 

.

.

.

.

( )

[( ) ( )]

x p y w

y rx y xz

z z xy

w m x w pn y w

= −

= − −

= − +

= − + −

       (1) 

where p is the counterpart of the Prandtl number for a fully treated convection problem, r is the counterpart for Rayleigh 
number, Deborah number, m, is a measure of relaxation time of the fluid relative to the characteristic time of this problem 
and Deborah number, n, is a measure of retardation time of the fluid relative to the characteristics time. The model is 
considered as a new chaotic system since it has an attractor that is completely different from the popular Lorenz [22], Chen 
[28], Lu [29], Rossler [30] attractors; and reflects nonlinear characteristics of thermal convection of Oldroyd-B fluids in a 
closed loop. 

In Ref. [25], Yang and Zhou showed that the values of m and n greatly influence the dynamics of the GLS. For example, 
m was shown to precipitate the onset of periodic behaviour while n impedes the onset of chaotic dynamics in the system. The 
GLS governed by Eq. 1 has been shown to exhibit rich varieties of dynamical behaviour including chaotic motion - depicted 
in Fig. 1 - with the following parameter settings p=10, r =20 and m = n =0.1 
 
3.0 Chaos Control in GLS 
 
3.1 Design of the recursive backstepping controllers 
Let us express system (1) in the following form: 
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where ui(t), i=1,2,3,4 are control inputs to be determined such that the state variables x,y,z and w of system (2) can take 
desired values xd, yd, zd and wd respectively. We define the error states between the state variables and desired values as: 
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= −

         (3) 

In order to design control functions ui, i=1,2,3,4, that can control system (2), let 
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where ci, i=1,2,…6 are arbitrary control parameters to be chosen appropriately. By substituting (4) into (3), one readily 
obtains the following error dynamics: 
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(5) 

In order to stabilize the error system (5) at the equilibrium position, let us consider a Lyapunov function of the form 

( )2 2 2 21

2 x x y y z z w wV k e k e k e k e= + + +      (6) 

where ki , i=x,y,z,w , are positive constants. The differential of the Lyapunov function along the trajectory of the error system 
(5) is  

. . . . .

x y z wx x y y z z w wV k e e k e e k e e k e e= + + +     (7) 

To satisfy the condition for asymptotic stability of the error dynamics (5) necessary for controlling chaos , we substitute (5) 
into (7) and choose ui, i=1,2,3,4 such that the derivative of the Lyapunov function is negative definite as follows: 
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We have observed from the results of computations carried out, that system (2) is effectively controlled with only c1 = c3 = 1 
and so we set c2 = c4 = c5 = c6 = 0 which simplify the controllers in (8) to 
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3.2 Numerical results 
In this sub-section, we will show numerical simulation results to demonstrate the feasibility of the designed controllers. 
Using the Fourth order Runge-Kutta routine with time step of 0.001 and initial conditions (x, y, z, w) = (0.8, 0.4, -0.8, -0.2), 
and fixing the parameter values of p, r, m, and n as in fig. 1 to ensure chaotic dynamics of the state variables, we solved 
system (2) with the controllers ui, i = 1,2,3,4 as defined in (9). The state trajectory of the system depicts irregular pattern 
when the controllers are deactivated and when the controllers are switched on at t=50, the state variables are controlled to the 
equilibrium position. We note that the controller in (9) is capable of controlling the dynamics of the chaotic GLS (i.e. Eq. 2) 
to stabilize it at any position ε (case f(t) = ε) and when ε = 0, the system becomes stabilized at the origin. 
 

 
 

Fig. 1: Three dimensional phase portrait of the generalized Lorenz system with the following parameter 
settings: p=10, r=20, m= 0.1 and  n = 0.1. 

 
 

 
Figure 2: Controlled chaotic vibrations of the 4D GLS. Controls have been activated at 50t ≥ .  
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4 Synchronization of Generalized Lorenz System 
Here, we examine the synchronization dynamics of GLS via adaptive backstepping technique. 
 
4.1 Design of backstepping controller 
In order to achieve the synchronization behaviour between two GLS evolving from different initial conditions, the GLS in (1) 
is expressed as master: 
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and slave 
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where iυ
 (i=1,2,3,4) are control functions to be determined and p1, r1, m1,n1 are uncertain parameters to be estimated in the 

response system . In what follows, an effective adaptive controller is designed to achieve global chaos synchronization 
between two GLS with fully unknown parameters. 
We define error vector as 

1 2 1 2 2 1 3 2 1 4 2 1

1 1 1 1

, , ,

, , ,p r m n

e x x e y y e z z e w w

e p p e r r e m m e n n

= − = − = − = −
= − = − = − = −

    (4)  

By subtracting Eq. (2) from Eq. (3) and using the definition of error vector in Eq. (4), one readily obtains the following error 
system: 
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The goal of the control is to find an effective controller iυ , i = 1, 2, 3, 4, with parameter update laws such that the response 

system (3) can globally and asymptotically synchronize with the drive system (2). Let us assume a Lyapunov function of the 
form: 

2 2 2 2 2 2 2 2 2
1 2 3 3 4

1
( )

2 p r m nV e e e e e e e e e= + + + + + + + +     (6) 

By inserting (5) into the time derivative of (6), we obtain the following  
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If the controllers iυ
, i=1, 2, 3, 4, are chosen as follows: 
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and the parameter estimation update law as follows 
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then the derivative of the Lyapunov  function in (7) is negative definite and according to Lassale-Yoshissawa theorem [31 ], 

the error dynamics will converge to zero as ∞→t , while the equilibrium, (0,0,0,0), remains globally asymptotically stable. 

This theoretical result implies that the GLS system (1) would be driven to the equilibrium state as ∞→t .  
 
4.2 Numerical Results  
Utilizing the fourth-order Runge-Kutta routine with time step of 0.001, r = 20, p = 10, m = 0.1, n = 0.1 and the initial 
conditions of the drive and response systems are respectively set as x1 = 0.1, y1 = 0. 2, z1= 0.4, w1 = 0.6 and x2=2.0, y2= 4.0, 

z2=0.8, w2 = 0.6 respectively. When the controllers ( )i tυ  (i = 1,2,3,4) are deactivated, a plot of average error  

 ( 2 2 2 2
1 2 3 4e e e e e= + + + ) against time (see Fig. 3) reveals irregular pattern that is comparable to the size of the attractor. 

 

 
Fig.3: Time series of the generalized Lorenz system when the controllers, ( )i tυ  (i = 1,2,3,4) were deactivated. 
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When the controllers are activated at t = 50 as shown in Fig. 4. The simulations results show that the error variables e1, e2, e3, 
e4 tend to zero, respectively.  Fig.5 reveals that the estimated values of the unknown parameters converge to p=10, r=0.3, 
m=0.1, n=0.1 as t →∞  respectively.  

 

Fig. 4: Error dynamics between two GLS with controllers activated at 50≥t  
 
 

 
Fig. 5: Estimate values of parameters p1, r1, m1, n1 for the response system (2) 

 
5. Conclusion 
In this paper, control functions have been designed via backstepping nonlinear control techniques for the stabilization, control 
and synchronization of the GLS of Oldroyd-B fluids. The designed recursive nonlinear controllers were capable of stabilizing 
the GLS at any chosen position. Based on Lyapunov stability theory, we designed two novel adaptive synchronization 
controllers with corresponding parameter update laws to globally synchronize two GLS evolving from different initial 
conditions. The performance of the theoretically designed controllers were verified by numerical simulations which 
confirmed the effectiveness of the proposed controllers. 
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