Optimal 3-Point Symmetric Quadratic Regression Designs for the Number of Trials, $\mathbf{N} \leq 7$.

Mbegbu J. I.

Department of Mathematics, University of Benin, Benin City.

Abstract

Optimal 3-point symmetric quadratic regression designs were constructed in the experimental domain $[-1,1]$ with the regression range $\chi=\left\{\left(1, x, x^{2}, \cdots, x^{k}\right): x \in D\right\}$.

For the symmetric design d_{3}^{*}, the information matrix, $M\left(d_{3}^{*}\right)$ and standardized variance, $\tilde{V}\left(x, d_{3}^{*}\right)$ were exploited to identify optimal 3-point symmetric quadratic regression designs based on optimality criteria.

The design points $\{(-1,0,1) \in D\}$ and the weights w_{1}, w_{2}, w_{3} for the number of trials $N \leq 7$ were used for the construction of the optimal designs. Some A-, V-, and D-optimal 3-point symmetric quadratic regression designs for the number of trials $N \leq 7$ are highlighted

Keywords: Optimal, 3-point, regression, design, symmetric, weights, matrix, domain, quadratic.

1.0 Introduction:

Consider the kth degree polynomial model [6]

$$
\begin{gather*}
Y_{i j}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{k} x_{i}^{k}+e_{i j} \tag{1.1}\\
i=1,2, \cdots, n ; j=1,2, \cdots, N
\end{gather*}
$$

with

$$
\begin{equation*}
E\left(Y_{i j}\right)=\sum_{j=0}^{k} \beta_{j} x_{i}^{j} \quad \text { and } \quad \operatorname{Var}\left(Y_{i j}\right)=\sigma^{2} \tag{1.2}
\end{equation*}
$$

In a compact form (1.1) is re-written as

$$
\begin{array}{ll}
& Y=X \beta+e \\
\text { where } & X=\left(1, x_{i}, x_{i}^{2}, \cdots, x_{i}^{k}\right) \\
\text { and } & \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{k}\right)^{T}
\end{array}
$$

Theorem: Gauss Markov Theorem [10].
For the full mean parameter system: Let X be an $n \times K$ matrix with full column rank K, and V be a nonnegative definite $n \times n$ matrix.

A left inverse L of X attains the minimum of $L V L^{T}$ over all left inverses L of X

$$
L V L^{T}=\operatorname{Min}_{\substack{L \in R^{\wedge \times n} \\ L X=I_{k}}} L V L^{T}
$$

if and only if $L V R^{T}=0$, where R is a projector given by $R=I_{n}-X G$ for some generalized inverse G of X.
A minimizing left inverse L exists; a particular choice is G-GVR ${ }^{\mathrm{T}} \mathrm{HR}$, with any generalized inverse H of $R V R^{T}$. The minimum admits the representation

$$
\operatorname{Min}_{\substack{L \in R \times \times \times n \\ L X=I_{k}}} L V L^{T}=\left(X^{T} V^{-1} X\right)^{-1}
$$

Corresponding authors: Mbegbu J. I. : E-mail: -, Tel. +2348020740989
Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 611 - 616
and is attained by any matrix $L=\left(X^{T} V^{-1} X\right)^{-1} X^{T} H$, where H is any generalized inverse of V.
By the theorem, the optimal estimator of β is given by

$$
\begin{equation*}
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y \tag{1.5}
\end{equation*}
$$

with the dispersion matrix

$$
\begin{equation*}
V(\hat{\beta})=\sigma^{2}\left(X^{T} X\right)^{-1} \tag{1.6}
\end{equation*}
$$

which depends on the values $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ of x, and the number of replications $N_{1}, N_{2}, N_{3}, \cdots, N_{n}$ such that $\sum_{i=1}^{n} N_{i}=N(\mathrm{~N}$ is the total number of observations)

Given the experimental design

$$
d_{n}=\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n} ; N_{1}, N_{2}, N_{3}, \cdots, N_{n}\right\}(1.7)
$$

with a finite N and finite number $n(n \geq k+1)$ of distinct regression values in the interval $[a, b]$, the regression vector $x_{i}=\left(1, x_{i}, x_{i}^{2}, \cdots, x_{i}^{k}\right)^{T}, i=1,2, \cdots$ are called the support of d_{n} written as:

$$
\begin{equation*}
\operatorname{supp} d_{n}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \tag{1.8}
\end{equation*}
$$

Accordingly, the matrix

$$
\begin{equation*}
X^{T} X=\sum_{i \leq x} N_{i} x_{i} x_{i}^{T} \tag{1.9}
\end{equation*}
$$

is called the information matrix of d_{n} and is denoted by $M\left(d_{n}\right)$ (See [8])
Since matrix inversion is antitonic [1] the inverse dispersion matrix is

$$
V^{-1}(\hat{\beta})=\frac{1}{\sigma^{2}}\left(X^{T} X\right)=\frac{1}{\sigma^{2}} \sum_{i \leq x} N_{i} x_{i} x_{i}^{T}=\frac{1}{\sigma^{2}} M\left(d_{n}\right)
$$

Hence

$$
\begin{equation*}
V^{-1}(\hat{\beta})=\frac{N}{\sigma^{2}} \sum_{i \leq x} M\left(\frac{d_{n}}{N}\right) \tag{1.10}
\end{equation*}
$$

is the precision matrix for the design d_{n} in the experimental domain $D=[a, b]$ and corresponding range $\chi=\left[\left(1, x, x^{2}, \cdots, x^{k}\right): x \in D\right] \in \mathbb{R}^{k+1}$.

Clearly, if the weights $w_{i}=\frac{N_{i}}{N}, i=1,2, \cdots, n$ are placed on the regression vectors, they vary continuously in the closed interval $[0,1]$ such that $w_{1}+w_{2}+w_{3}+\cdots+w_{n}=1$. Thus the precision matrix becomes.

$$
\begin{equation*}
V^{-1}(\hat{\beta})=\frac{N}{\sigma^{2}} \sum_{i \leq k} w_{i} x_{i} x_{i}^{T} \tag{1.11}
\end{equation*}
$$

and the design (1.7) becomes

$$
\begin{equation*}
d_{n}=\left\{x_{1}, x_{2}, \cdots, x_{n} ; w_{1}, w_{2}, \cdots, w_{n}\right\} \tag{1.12}
\end{equation*}
$$

where $n>k+1$
For simplicity [12, 13], take $\sigma^{2}=I$, the dispersion matrix for design (1.12) is
$V(\hat{\beta})=\left(X^{T} D_{n} X\right)^{-1}$
and the information matrix

$$
M\left(d_{n}\right)=X^{T} D_{n} X
$$

where

$$
X=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{k} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{k} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{k}
\end{array}\right) \text { and } D_{n}=\operatorname{diag}\left(w_{1}, w_{2}, \cdots, w_{n}\right)
$$

2.0 Materials and Methods

Define the experimental symmetric domain $D=[1,-1] \quad[10]$ with the regression range $\chi=\left\{\left(1, x, x^{2}, \cdots, x^{k}\right)^{T}: x \in D\right\}$ Let d_{n}^{R} be the reflected design for (1.1) with respect to (1.2).

$$
\begin{equation*}
d_{n}^{R}=\left(-x_{1}, x_{2}, \cdots,-x_{n} ; w_{1}, w_{2}, \cdots, w_{n}\right) \tag{2.1}
\end{equation*}
$$

Accordingly, the design d_{n} and d_{n}^{R} have the same even moments while the odd moments of d^{R} have a reversed sign. (See [4])

Let $M\left(d_{n}^{R}\right)$ be the information $(k+1) \times(k+1)$ matrix of the design d_{n}^{R}.

$$
\begin{equation*}
M\left(d_{n}^{R}\right)=Q M\left(d_{n}\right) Q \tag{2.2}
\end{equation*}
$$

where $Q=\operatorname{diag}(-1,1,-1, \cdots, \pm 1)$ is a diagonal matrix. Hence, the symmetric design

$$
\begin{equation*}
d_{n}^{*}=\frac{1}{2}\left(d_{n}+d_{n}^{R}\right)=\left\{ \pm x_{i}, \frac{w_{i}}{2}, \frac{w_{i}}{2} / i=1,2, \cdots, n\right\} \tag{2.3}
\end{equation*}
$$

assigns the weights $\frac{w_{i}}{2}$ to x_{i} and $-x_{i}$ for each i. Clearly, the information matrix for d_{n}^{*} is

$$
\begin{align*}
M\left(d_{n}^{*}\right) & =\frac{1}{2}\left[M\left(d_{n}\right)+M\left(d_{n}^{R}\right)\right] \tag{2.4}\\
& =\frac{1}{2}\left[M\left(d_{n}\right)+Q M\left(d_{n}\right) Q\right]
\end{align*}
$$

By similarity transformation $M\left(d_{n}\right)$ and $M\left(d_{n}^{R}\right)$ have the same eigenvalue. Since optimality criterion, ϕ is super-additive (Atkinson and Donev, 2002; Atkinsion et al, 2007)

$$
\begin{equation*}
\phi\left[M\left(d_{n}^{*}\right)\right]=\phi\left[\frac{1}{2}\left[M\left(d_{n}\right)+M\left(d_{n}^{R}\right)\right]\right] \geq \phi\left[M\left(d_{n}\right)\right] \tag{2.5}
\end{equation*}
$$

which according to Pukelsheim (2006) shows that symmetrization improves the value of the criterion ϕ or at least it guarantees the same value as long as ϕ is supper-additive and invariant with respect to the reflection.

According to [7], comparison of designs is based on dispersion matrices of the estimator of the regression parameters. Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ be the esimators of β under designs d_{1} and d_{2}. If $V\left(\hat{\beta}_{1}\right) \leq V\left(\hat{\beta}_{2}\right)$, we say that the design d_{1} dominates design d_{2}. Pukelsheim and Studden [9] define optimality criterion ϕ as supper-additive function from the closed cone of nonnegative definite matrix into a real line. The most prominent optimality criteria are the matrix means ϕ_{p} for $p \in(-\infty, 1)$. The classical $A-, D-, V-, E-$ and T criteria are special cases of matrix means (see [10]).

According to $[4,11]$, the standardized variance for comparing designs is

$$
\begin{equation*}
\tilde{V}\left(x, d_{n}^{*}\right)=\frac{V(\hat{Y})}{\sigma^{2}} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
V(\hat{Y}) & =\sigma^{2} f^{T}(x) M^{-1}\left(d_{n}^{*}\right) f(x), \text { provided }\left|M\left(d_{n}^{*}\right)\right| \neq 0 \tag{2.7}\\
f(x) & =\left(1, x, x^{2}, \cdots, x^{k}\right)^{T}
\end{align*}
$$

Fedorov [3] and Kiefer [5] established the following equivalence conditions for d_{n}^{*}
(i) the design d_{n}^{*} minimizes $\phi\left[M\left(d_{n}^{*}\right)\right]$
(ii) the minimum of $\tilde{V}\left(x, d_{n}^{*}\right) \geq 0$ for $x \in D$
(iii) the variance $\tilde{V}\left(x, d_{n}^{*}\right)$ achieves its minimum at the points of the design, d_{n}^{*}.

By condition (ii), the design d_{n}^{*} is D-optimum if $\max _{x \in D} \tilde{V}\left(x, d_{n}^{*}\right) \leq p$, where p is the number of support points of the design, d_{n}^{*}. The design d_{n}^{*} is $A-, V-$, and $D-$ optimal in the class of designs if d_{n}^{*} has
(i) $\quad \min \operatorname{tr}\left(X^{T} D_{T} X\right)^{-1}$
(ii) $\operatorname{Min}_{x \in D} V(\hat{Y})$
(iii) $\operatorname{Min}\left\lfloor\operatorname{Max}_{x \in D} \tilde{V}\left(x, d_{n}^{*}\right)\right]$, respectively.
int Symmetric Quadratic Regression Designs

3-point symmetric Quadratic Regression Designs d_{3}^{*} on $[-1,1]$	Information matrix $M\left(d_{3}^{*}\right)$	$M^{-1}\left(d_{3}^{*}\right)$	$\left\|M\left(d_{3}^{*}\right)\right\|$	$\begin{aligned} & \text { Trace of } \\ & M^{-1}\left(d_{3}^{*}\right) \end{aligned}$	$V(\hat{Y})$	$\min _{x \in D} V(\hat{Y})$	$\tilde{V}\left(x, d_{3}^{*}\right)$	
$\left\{-1,0,1 ; \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$	$\frac{1}{3}\left(\begin{array}{lll}3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2\end{array}\right)$	$\frac{3}{2}\left(\begin{array}{ccc}2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 3\end{array}\right)$	$\frac{4}{27}$	9	$\frac{\sigma^{2}}{2}\left(9 x^{4}-9 x^{2}+6\right)$	$3 \sigma^{2}$	$\frac{1}{2}\left(9 x^{4}-x^{2}+6\right)$	
$\left\{-1,0,1 ; \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}$	$\frac{1}{2}\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}2 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 4\end{array}\right)$	$\frac{1}{8}$	8	$2 \sigma^{2}\left(2 x^{4}-x^{2}+1\right)$	$2 \sigma^{2}$	$2\left(2 x^{4}-x^{2}+1\right)$	
$\left\{-1,0,1 ; \frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right\}$	$\frac{1}{5}\left(\begin{array}{lll}5 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2\end{array}\right)$	$\frac{5}{6}\left(\begin{array}{cccc}2 & 0 & -2 \\ 0 & 3 & 0 \\ -2 & 0 & 5\end{array}\right)$	$\frac{12}{125}$	$\frac{25}{3}$	$\frac{5 \sigma^{2}}{6}\left(5 x^{4}+2\right)$	$\frac{5 \sigma^{2}}{3}$	$\frac{5}{6}\left(5 x^{4}+2\right)$	
$\left\{-1,0,1 ; \frac{2}{5}, \frac{1}{5}, \frac{2}{5}\right\}$	$\frac{1}{5}\left(\begin{array}{lll}5 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 4\end{array}\right)$	$\frac{5}{4}\left(\begin{array}{ccc}4 & 0 & -4 \\ 0 & 1 & 0 \\ -4 & 0 & 5\end{array}\right)$	$\frac{16}{125}$	$\frac{25}{2}$	$\frac{5 \sigma^{2}}{6}\left(5 x^{4}-7 x^{2}+4\right)$	$\frac{5 \sigma^{2}}{2}$	$\frac{5}{4}\left(5 x^{4}-7 x^{2}+4\right)$	
$\left\{-1,0,1 ; \frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}$	$\frac{1}{3}\left(\begin{array}{lll}3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$	$\frac{3}{2}\left(\begin{array}{cccc}1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right)$	$\frac{1}{9}$	9	$\frac{3 \sigma^{2}}{2}\left(3 x^{4}+1\right)$	$\frac{3}{2} \sigma^{2}$	$9\left(3 x^{4}+1\right)$	
$\left\{-1,0,1 ; \frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right\}$	$\frac{1}{6}\left(\begin{array}{cccc}6 & -1 & 3 \\ -1 & 3 & -1 \\ 3 & -1 & 3\end{array}\right)$	$\frac{1}{4}\left(\begin{array}{ccc}8 & 0 & -8 \\ 0 & 9 & 3 \\ -8 & 3 & 17\end{array}\right)$	$\frac{1}{9}$	$\frac{17}{2}$	$\begin{aligned} & \frac{\sigma^{2}}{4}\left(17 x^{4}+6 x^{3}-\right. \\ & \left.25 x^{2}+8\right) \end{aligned}$	$\frac{3}{2} \sigma^{2}$	$\begin{aligned} & \frac{3}{2}\left(17 x^{4}+6 x^{3}-\right. \\ & \left.25 x^{2}+8\right) \end{aligned}$	D
$\left\{-1,0,1 ; \frac{3}{7}, \frac{1}{7}, \frac{3}{7}\right\}$	$\frac{1}{7}\left(\begin{array}{lll}7 & 0 & 6 \\ 0 & 6 & 0 \\ 6 & 0 & 6\end{array}\right)$	$\frac{7}{6}\left(\begin{array}{cccc}6 & 0 & -6 \\ 0 & 1 & 0 \\ -6 & 0 & 7\end{array}\right)$	$\frac{36}{343}$	$\frac{49}{3}$	$\frac{7 \sigma^{2}}{6}\left(7 x^{4}-6 x^{2}+6\right)$	$7 \sigma^{2}$	$\frac{49}{6}\left(7 x^{4}-6 x^{2}+6\right.$	

4.0 Discussion

Clearly, we have constructed a 3 -point symmetric quadratic regression design $\left\{-1,0,1, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}$, which is Aoptimal. Also the 3 -point symmetric quadratic regression designs $\left\{-1,0,1, \frac{2}{5}, \frac{1}{5}, \frac{2}{5}\right\},\left\{-1,0,1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$, and $\left\{-1,0,1, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right\}$ are D-optimal. But the designs $\left\{-1,0,1, \frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}$ and $\left\{-1,0,1, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right\}$ are V-optimal among the class of designs constructed.

References

[1]. Atkinson, A. C. and Donev, A. N. (2002), Optimum Experimental Designs, Oxford University Press Inc., New York, pp. 93-133.
[2]. Atkinson, A. C., Donev, A. N., and Tobias R. D. (2007), Optimum Experimental Designs with SAS, Oxford University Press, N. Y., pp. 53-64.
[3]. Fedorov, V. V. (1972), Theory of Optimal Experiments, Academic Press, N. Y., pp. 76-95.
[4]. Goos, P., Tack, L. and Vandebrowk, M. (2001), Optimal Designs for Variance Function Estimation using Sample Variances, Journal Stat. Planning and Inference 92: pp. 233-252.
[5]. Kiefer, J. C. (1974), General Equivalence Theory for Optimum Designs, Annal. Stat. 2, 849-879.
[6]. Kiefer, J. C. (1961), Optimal Designs in regression Problems II, Annals. Math. Stat. 32, 298-325.
[7]. Kiefer, J. C. and Wolfowitz, J. (1959), Optimum Designs in regression Problems, Annals. Math. Stat. 30, 271-294.
[8]. Pukelsheim, F. (1980), On Linear Regession Designs which maximize Information matrix, Journal Stat. Planning and Inference 4: 339-364.
[9]. Pukelsheim, F. and Studden, W. J. (1993), E-Optimal Designs for Polynomial regression, Annals Stat. 21; 402-415.
[10]. Pukelsheim, F. (2006), Optimum Design of Experiments, Society for Industrial and Applied Mathematics, Wiley, USA, pp. 1-34.
[11]. Trinca, I. A. and Gilmour, S. A. (1999), Difference Variance Dispersion Graphs for Comparing Response Surface Designs, Applied Stat. 48, 441-455.
[12]. Wierich, W. (1987), On Optimal Designs and Complete Class Theorems for experiments with Continuous and Discrete Factors Influence, Journal. Stat. Planning and Inference, 15; 19-27.
[13]. Wu, C. F. J. and Hamada, M (2002), Experiments, Planning, strategies, and parameter design Optimization, Wiley USA, pp. 10-24.

