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Abstract 
 

Optimal 3-point symmetric quadratic regression designs were constructed in the experimental 
domain [ ]1, 1−  with the regression range ( ){ }21, , , , :kx x x x Dχ = ∈L . 

For the symmetric design *
3d , the information matrix, ( )*

3M d  and standardized variance, 

( )*
3,V x d%  were exploited to identify optimal 3-point symmetric quadratic regression designs based on 

optimality criteria.  
The design points ( ){ }1, 0, 1 D− ∈  and the weights 

1 2 3, ,w w w  for the number of trials 7N ≤  

were used for the construction of the optimal designs. Some A-, V-, and D-optimal    3-point 
symmetric quadratic regression designs for the number of trials 7N ≤  are highlighted 
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1.0  Introduction: 
 
Consider the kth degree polynomial model [6] 
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In a compact form (1.1) is re-written as  
   eXY += β         (1.3) 

where   ( )k
iii xxxX ,,,,1 2

L=  

 and   ( )T
kβββββ ,,,, 210 L=       (1.4) 

Theorem:  Gauss Markov Theorem [10]. 
 For the full mean parameter system: Let X be an Kn ×  matrix with full column rank VandK ,  be a nonnegative 

definite nn ×  matrix. 

 A left inverse XL of  attains the minimum of TLVL  over all left inverses XL of  
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if and only if 0=TLVR , where R is a projector given by XGIR n −=  for some generalized inverse XG of . 

A minimizing left inverse L  exists; a particular choice is G-GVRTHR, with any generalized inverse TRVRH of . The 

minimum admits the representation  
   ( ) 11 −−

=
∈

=
×

XVXLVLMin TT

ILX
RL

k

nk

 

 
Corresponding authors: Mbegbu  J. I. : E-mail: -, Tel. +2348020740989 

 Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 611 – 616   



612 

 

Optimal 3-Point Symmetric Quadratic Regression Designs for …   Mbegbu        J of NAMP 
 

and is attained by any matrix ( ) HXXVXL TT 11 −−= , where H  is any generalized inverse of V .  

 By the theorem, the optimal estimator of β  is given by  

   ( ) YXXX TT 1ˆ −=β        (1.5) 

with the dispersion matrix  

   ( ) ( ) 12ˆ −= XXV Tσβ        (1.6) 

which depends on the values nxxxx ,,,, 321 L  of x , and the number of replications nNNNN ,,,, 321 L  such that 

∑
=

=
n

i
i NN

1

(N is the total number of observations) 

Given the experimental design  

   { }nnn NNNNxxxxd ,,,,;,,,, 321321 LL= (1.7) 

with a finite N  and finite number ( )1+≥ knn  of distinct regression values in the interval [ ]ba, , the regression vector 

( ) LL ,2,1,,,,,1 2 == ixxxx
Tk

iiii are called the support of nd  written as:  

  supp { }nn xxxd ,,, 21 L=        (1.8)  

Accordingly, the matrix  
   ∑

≤
=

xi

T
iii

T xxNXX        (1.9) 

is called the information matrix of nd  and is denoted by ( )ndM  (See [8]) 

 Since matrix inversion is antitonic [1] the inverse dispersion matrix is  
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is the precision matrix for the design nd  in the experimental domain [ ]baD ,=  and corresponding range 

( )[ ]∈∈= Dxxxx k :,,,,1 2
Lχ �

k+1. 

 Clearly, if the weights ni
N

N
w i

i ,,2,1, L==  are placed on the regression vectors, they vary continuously in the 

closed interval [ ]1,0  such that 1321 =++++ nwwww L . Thus the precision matrix becomes.    

     ( ) ∑
≤

− =
ki

T
iii xxw

N
V

2
1 ˆ

σ
β       (1.11) 

and the design (1.7) becomes  

   { }nnn wwwxxxd ,,,;,,, 2121 LL=      (1.12)  

where 1+> kn  

For simplicity [12, 13], take I=2σ , the dispersion matrix for design (1.12) is  
    

( ) ( ) 1ˆ −= XDXV n
Tβ        (1.13) 

and the information matrix 

   ( ) XDXdM n
T

n =        (1.14) 
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2.0 Materials and Methods  

Define the experimental symmetric domain [ ]1,1 −=D  [10] with the regression range 

( ){ }Dxxxx
Tk ∈= :,,,,1 2

Lχ   Let R
nd  be the reflected design for (1.1) with respect to (1.2). 

( )nn
R
n wwwxxxd ,,,;,,, 2121 LL −−=     (2.1)  

Accordingly, the design R
nn dandd  have the same even moments while the odd moments of Rd  have a reversed sign. (See 

[4]) 

 Let ( )R
ndM  be the information )1()1( +×+ kk  matrix of the design R

nd . 

   ( ) ( )QdQMdM n
R
n =        (2.2)      

where  ( )1,,1,1,1 ±−−= LdiagQ  is a diagonal matrix. Hence, the symmetric design 
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assigns the weights 
2

iw
to ii xandx −  for each i . Clearly, the information matrix for *

nd  is  
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By similarity transformation ( ) ( )R
nn dManddM  have the same eigenvalue. Since optimality criterion, φ  is super-additive 

(Atkinson and Donev, 2002; Atkinsion et al, 2007) 

   ( )[ ] ( ) ( )[ ] ( )[ ]n
R
nnn dMdMdMdM φφφ ≥




 +=
2

1*    (2.5) 

which according to Pukelsheim (2006) shows that symmetrization improves the value of the criterion φ  or at least it 

guarantees the same value as long as φ  is supper-additive and invariant with respect to the reflection.  

 According to [7], comparison of designs is based on dispersion matrices of the estimator of the regression parameters.  

Let 21
ˆˆ ββ and  be the esimators of β  under designs 21 dandd . If ( ) ( )21

ˆˆ ββ VV ≤ , we say that the design 1d  

dominates design 2d . Pukelsheim and Studden [9] define optimality criterion φ  as supper-additive function from the closed 

cone of nonnegative definite matrix into a real line. The most prominent optimality criteria are the  

matrix means pφ  for ( )1,∞−∈p . The classical TandEVDA −−−− ,,,  criteria are special cases of matrix means 

(see [10]). 
 According to [4, 11], the standardized variance for comparing designs is  
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2

*
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,
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σ
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dxV n =        (2.6)  

where  

   ( ) ( ) ( ) ( ) 0provided,)(ˆ **12 ≠= −
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T dMxfdMxfYV σ   (2.7) 

   ( ) ( )Tkxxxxf ,,,,1 2
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Fedorov [3] and Kiefer [5] established the following equivalence conditions for *nd  

(i) the design *
nd  minimizes ( )[ ]*

ndMφ  

(ii) the minimum of ( ) DxdxV n ∈≥ for0,
~ *

  

(iii) the variance ( )*,
~

ndxV  achieves its minimum at the points of the design, *
nd  .  

 By condition (ii), the design *
nd  is D-optimum if ( ) pdxV n

Dx
≤

∈

*,
~

max , where p is the number of support points of 

the design, *
nd . The design *

nd  is optimaland,, −−− DVA  in the class of designs if *nd  has  

(i) ( ) 1
min

−
XDXtr T

T  

(ii) ( )YVMin
Dx

ˆ
∈
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~
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dxVMaxMin
∈

,   respectively.  
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Results 
Point Symmetric Quadratic Regression Designs   

3-point symmetric 
Quadratic Regression 

Designs 
*
3d  on [-1, 1]    

Information matrix 
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 4.0 Discussion  
 Clearly, we have constructed a 3-point symmetric quadratic regression design { },,,,1,0,1 4

1
2
1

4
1− which is A-

optimal. Also the 3-point symmetric quadratic regression designs { },,,,1,0,1 5
2

5
1

5
2− { },,,,1,0,1 3

1
3
1

3
1−  and 

{ }6
1

2
1

3
1 ,,,1,0,1−  are D-optimal. But the designs { }6

1
3
2

6
1 ,,,1,0,1−  and { }6

1
2
1

3
1 ,,,1,0,1−  are V-optimal among the 

class of designs constructed.   
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