Journal of the Nigerian Association of Mathematical Physics
Volume 18 (May, 2011), pp 429 — 434
© J. of NAMP

Software Power Metric Model: An Implementation
Veronica V.N. Akwukwuma and Emmanuel A. Onibere

Department of Computer Science,
University of Benin, Benin City, Edo State, Nigeria.

Abstract

In an earlier work, we gave a precise definition &oftware power, and also
proposed a function oriented metric for measuringf8vare power. In this paper, we
implemented the proposed model. The software appilinn used to implement the
proposed model is an application Software calledSCREPANCY", developed by the
Computer Center of the University of Benin for thudit department of the University.
Five (5) computers with different processor speadsre used to run DISCREPANCY
and the execution time (TIME) in each case was reted. We then obtain the
application functions point count. Our result showthat the proposed metric is
computable, consistent in its use of unit, and imgramming language independent

Keywords: Software attributes, Software power, measuremeaftware metric, function point.

1. Introduction

The Audit department of the University of Benin l®atabase of all the staff of the University whis normally
updated from time to time when there is staff proamoor staff retiring from the services of the uUsisity. The audit
department of the University has application Sofevealled ‘DISCREPANCY", developed by the Compu@enter of the
University of Benin for the use of the audit depagtt . At the end of every month, the Bursary depant sends a copy of
the salary information for that month to the aullipartment. The Software, ‘DISCREPANCY', compahesallowances paid
to each staff with the data existing in the databasorder to determine if there is any discrepaincthe allowances paid. If
any, the Software detects such discrepancies ametaes a report querying the Bursary department.

This application was chosen as a basis for impléimgthe proposed model of software power becat@iseeoproximity
of getting all the information needed about an @agibn before its function points count can be pated. This is useful in
its own right to verify that the proposed model tsebe specified metric constraints.

2. Background

According to Fenton and Pfleeger [1] Softwareilattes are induced by principles, and they are ciateal with
components. Attributes are evident in degrees,ishat say they can be present to high degreddnzor absent.

Gilb [2], noted that measurement is important, psit is in other fields of science and enginagride emphasized the
fact that measurement is not a substitute for huimsight, but is a tool for aiding our understardof what we do. Symons
[3] opined that, to make Software requirements urigoous, traceable and testable, the characteristiould be made
measurable.

Measurement is not only useful but also necesgsitygr all, how can you tell if your project is hday if you have no
measures of its health?

Green [4], referring to the Little Oxford Dictionarexplained that Quality is a noun meaning “degréexcellence”.
Excellence is defined as “surpass merit”, Merit“gsodness”, and goodness as “virtue”. He furtheplaxed that, the
Software has quality to the extent that it providehie to some living, breathing people with cheie&d options. If another
program solves a similar problem in a way thatgheson values more, it has quality. Green [4] ithefopinion that just as
quality is not an intrinsic value, it is not stati@@uality is dynamic and an attribute is “identifie.

Although the terms measure, measurement and metrigesused interchangeably, it is important to ribi subtle
differences between them. Within the Software cdnte measure provides a quantitative indicationhef extent, amount,
dimension, capacity or size of some attribute @cpss. Measurement is the act of determining a uneak [5], the IEEE
standard Glossary of Software Engineering TeamgH®&3} defined metric as “a quantitative measuréhefdegree to which
a system, component or process possesses a giubatat. According to Pressman [5], Software ergincollects measures
and develops metrics so that indicators will beaotgd. He further explained that an indicator imetric or a collection of
metrics that provides insight into the Softwareomss, a Software project or the product itself, #vad insight leads to
informed decision making.

Corresponding authord/eronica V.N: E-mail: vakwukwuma@yahoo.com, Ted2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011)429 — 434

429

Software Power Metric Model: An Implementation. Akwukwuma and Onibere J of NAMP

According to Calvert [6], metrics are managementstdhat are used to estimate the cost and resoegeerements of a
project. Software metrics deal with measuring vasiaspects of computer Software and its developnitmexplains that
Software metrics can be used to estimate projestscto manage resources, to evaluate the effeetbeeof programming

methods and the reliability of a system; it inva@veaeasure of system change, program complexitypamgramming effort,
correctness, testability, maintainability, relidtyiland so on [7].

Metrics help us understand the technical processistused to develop a product. The process isuned to improve it
and the product is measured to increase qualityH6dductivity and quality are measures of the potit as a function of
effort and “fitness of use” of the output respeelyv For planning and estimation, historical data ased to aid in predicting
more accurately. He [6] explained that Softwamméasured to:

Indicate the quality of the product

Assess the productivity of the people who prodhegproduct

Assess the benefits derived from new software emging tools and methods
Form a base line for estimation

Help justify request for tools or training.

VVYVYVYVYYV

3. Methodology

Akwukwuma and Onibere [8] proposed a model for meag the Software Power {Pas
FP

~ TIME* SPEED

1)

S

where:

P,= Software Power,

FP= Number of function point count,

TIME = Execution time,

SPEED= Processor speed.
This represents the rate at which the Softwareopsd work. Processor speed (SPEED) is normallyngiecution time
can be recorded using a stop watch, number of iimgtoint count can be computed following the In&gional Function
Point Users GrouglFPUG) guidelines provided in the Function Point Countiigictices ManualFPCPM) version 4.1[9]
and [10].
Frorr[l th]e model, the numerator, function point cdsiuist a number. The processor speed is measutexitz (Hz), which is
the number of cycles per second, while the exeouiioe is measured in seconds, in other words;

P. (unit) = No. of function point count
S SPEED (Cycles/sec) * TIME (sec

_No. of function point cour
=)
Cycles
It is obvious here that software power is a funtiid function point counts and the execution timvkich in turn is a function
of the processor speed of the computer used taigxére program.

3.1 FRAMEWORK

Measurement Theory specifies the general frameworkvhich measures should be defined. Intuitivelpwr is a
measurement concept that is considered extremidyamg to engineering products. In our earlier wfgk the framework
“Property Based Software Engineering Measuremertp@sed by [11] was adapted as a guide in our lsdarcthe new
measure as follows:
Applying the framework, power cannot be negativeerty Power 1), and we expect it to be null wizesystem does not
contain any elements (property Power.2). When nmexddb not have elements in common, we expect Poaee additive
(property Power.3). Consequently, we defined thevd?of a system S, as a function Power(S) thah#&axcterized by the
following properties Power.l to Power.3.
PROPERTY Powerl: Nonnegativity. The power of a system S = <E, R> is nonnegative. Power(Sk 0 (Power.l)
PRPERTY Power2: Null Value.The Power of a System S = < E, R> is null if Engpty, E =0 = Power(S) 0 (Power II)
PROPERTY Power.3: Module Additivity. The Power of a system S = <E, R> is equal to tine af the Power of two of its

modules m = <E,;, R> and my,= <E», Rn2> such that any element of S is an element oéeitt

or my (M, 0S and m S and E= E,,0E ynand En; nE 5,=0)= Power(S) = Power (gh+ Power (rp)

(Power.111)

Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011)429 - 434

430

Software Power Metric Model: An Implementation. Akwukwuma and Onibere J of NAMP

For instance, the power of the system S with thlisppint modules m m,, and m is the sum of the powers of the three
modules m m,, and m.

3.2 Implementation and Results

The proposed modahplementation is as follows:

Five (5) computers with different processor spegéde used to run the application, DISCREPANCY dradxecution time
(TIME) in each case was recorded. Table 1 gives procspsed (SPEED) and their corresponding execuitioa {TIME).

Table 1: Processor speed and their correspomdj time

COMPUTER SPEED TIME
Computer 1 2gHz 42mins. 59secs
Computer 2 2.26gHz 38mins.2secs
Computer 3 1000mHz 1lhr. 26mins
Computer 4 851mHz 1hr. 41mins
Computer 5 796mHz 1hr. 48mins

To compute the function point counts, the applaratiocumentation and the function point analysie were needed. The
application documentation was collected from usdithe Software while the function point analysiterwas obtained from
International Function Point User Group countin@gtices manual [9]. With the two documents madeilaa, the
computation of the function point count was carioed.
The actual calculation process of function poistlitis accomplished in three main stages. Theggstare to:
(i) Determine the unadjusted function poitd&P);
(i) Calculate the value adjustment factor (VAF);

(iii) Calculate the final adjusted function points (AFP).

3.2.1 Unadjusted function points (UFP)

The first stage, determining the unadjusted fumcpoints (UFP), reflects the functionality of moelsildelivered to the user
that they have requested and defined. The unadjfistetion points (UFP) includes data (file) arahsactional functions.

In this application, there were eighty (80) tratgaml function types and three (3) file types (BT Out of the eighty
transactions nineteen (19) of them were Externplt® (El), one (1) was External Output (EO) andysi%0) External

Inquiries (EQ). A file can either be Internal LogicFiles (ILF) or External Interface Files (EIF). summary of their
contributions to UFP is given in Tables 2.

Table 2: Summary of transactions’ contribution to U-P

TYPE OF TRANSACTIONS | COMPLEXITY LEVEL
Low Average High Tota
External Inputs (EI) - 3*4 =12 16*6 = 96 108
External Outputs (EO) - 1*5=5 - 5
External Inquiries (EQ) - - 60*6 = 360 360
Total No of UFP 473

In this application, three (3) file types (3FTR) reeidentified, two of them were Internal Logicalds (2ILF); namely

Data2.Recordset (Audit file2) and Data3.Recorddetl(t filel) and one (1) External Interface FileE(E); Datal.Recordset
(Bursary file). Each of the ILFs has more than(§ixRecord Element Types (RET) and each of thentagoed more than 51
Data Element Type (DET), hence the files were raiighh and scored 15 each, making a contributioBOofo UFP. The EIF

contains over 6 RET and over 50 DET, hence it waesdr high and scored 10. A summary of their coutidins to the UFP

count is shown in Table 3. While Table 4 gives msary of the Unadjusted Function point (UFP) far #pplication.

Table 3: Summary of file’s contribution to UFP

FILE TYPE RET DET COMPLEXITY SCOREH
Datal.Recordset (EIF) 4,763 237 High 10
Data2.Recordset (ILF) 416 83 High 15
Data3.Recordset (ILF) 4,705 241 High 15

| File UFP count 40

Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 429 — 434
431

Software Power Metric Model: An Implementation. Akwukwuma and Onibere J of NAMP

Table 4: Summary of The Function Points of The Components

TYPE OF COMPONENT COMPLEXITY OF COMPONENTS
Low Average | High Tota
External Inputs (EI) - 3*4 =12 16*6 =96 108
External Outputs (EO) - 1*5=5 - 5
External Inquiries (EQ) - - 60*6 = 360 360
Internal Logical Files (ILF) - - 2*15=30] 30
External Interface Files (EIF) - - 1*10 =10 10
Total No of UFP 513

3.2.2. Value adjustment factor (VAF)
«» The second stage determining the value adjustraeturf(VAF) is an earmark of the general functiggarovided
to the user. The standard Documentations needed are

e General Specification Documentations

e Interview with the users.
The VAF is derived from the sum of the degreendiience (DI) of the 14 general system characiesglGSCs). The DI of
each of these characteristics ranges from zerwed® to 5), from no influence to strong influerj@®]. Each characteristic is
assigned the rating based upon the interview Wighusers. This sum is substituted into the Intérnat Function Point Users
Group (IFPUG) equation for VAF.
The IFPUG equation for Value Adjustment Factor (JAg:

VAF = O.65+[(i Ci)/104.........)

Where: ¢= degree of influence for each General System Cheriatics
i =1to 14, representirgle GSC.

> = summation of all 14 GSC'’s

The 14 general system characteristics (GSCs) #tatthe general functionality of the applicatiofnigecounted is shown in
table 5.

Table 5: GSC's at a Glance (Longstreet 2004)

General System Characteristics Brief Description

1. Data communication How many communication ftiesi are there tg
aid in the transfer or exchange of information
with the application or system?

2. Distributed data processing How are distributddta and processing
functions handled?

3. Performance Did the wuser require response time |or
throughput?

4. Heavily used configuration How heavily used ise tcurrent hardware
platform where the application will be executed?

5. Transaction rate How frequently are transactiexecuted daily
weekly, monthly, etc.?

6. On-Line data entry What percentage of the infdiom is entered
On-Line?

7. End-User efficiency Was the application designfed end-use
efficiency?

8. On-Line update How many ILF's are updated by Lie
transactions?

9. Complex processing Does the application havensite logical o
many user’s needs?

10. Reusability Was the application developed to meet one or
many user’s needs?

432

11. Installation ease How difficult is conversiamanstallation?

12. Operational ease How effective and/or automatesl start-up
backup, and recovery procedures?
13. Multiple sites Was the application specifically designed,

developed, and supported to be installed at
multiple organizations?

14. Facilitate change Was the application spedificadesigned,
developed, and supported to facilitate change?

The detailed General System Characteristics (G&C®ach of the fourteen questions as given in [A#6je given to two of
the users of the application to respond to andatfegage of their ratings was used to compute th& Yok the application
using the IFPUG equation for Value Adjustment FaCWAF).

Table 5 gives the average ratings by the useiseopplication.

Table 6: Average Score of GSC

SCORE
GENARAL SYSTEM CHARACTERISTICS As
Data communication 0
Distributed data processing 1

Performance 1
Heavily used configuration 2
Transaction rate 1
On-Line data entry 4
End-User efficiency 5
On-Line update 1
Complex processing 2
1
1
5
0
2

OO N[O (WIN|F

10 Reusability

11 Installation ease

12 Operational ease
13 Multiple sites

14 Facilitate change
Total 26

The average rating score, 26 was then substitntedhe equation 3 for Value Adjustment factor (\JA5 follows;
VAF =0.65 + [(>. G) / 100] ?3)
VAF =0.65 + (26 / 100) =0.91

3.2.3 Adjusted function points (AFP):
The third stage is the calculation of the finalustigd function points (AFP): the total functiontoiount of an application is
represented as follows:

AFP = UFP * VAF)

Where AFP = adjusted function points;

UFP = unadjusted function points; and

VAF = value adjustment factor.
By substituting the values of computed UFP (=518) ¥AF (=0.91) into equation (4) we obtain the apgtion functions
point count (FP) as;

FP = UFP * VAF (5)

FP =513 *0.91 = 466.8
All definitions, rules for counting and classifginthat illustrate this process can be found in FFIGrersion 4.1 [9].
The computed value of the application function p¢iFP = 466.83) was then substituted into the psedomodel (eq.1), as
well as each of the processor speeds (SPEEDhairdcbrresponding execution times (TIME) to obtdie Software power
(Ps). Table 7 gives a summary of the results withedhprocessor speeds.

TABLE 7: Summary of the results (varied processor geed).

COMPUTER| SPEED TIME Power ¥
Computer 1 796mHz| 1hr. 48mins. = 6480secs. 90.49879

433

Computer 4 | 851mHz| 1hr. 41mins. = 6060secs. 90.51669
Computer 3 1000mHz 1hr. 26mins. = 5160secs. 904555
Computer 4 2gHz 42mins. 59sec. = 2579s¢cs. 90.20561
Computer 5 2.26gHz| 38mins.2secs. = 2282secs. 903512

Table 7: reveals that with varied processor sptetipower of any given software will remain approately constant. The
little variation we see in the result resulted fréime recording of execution time from different Guuters used to run the
application hence we accept a variation of + Q,BVimplementing the proposed metric we see thanibgic is computable;
it is consistent in its use of unit; it is indepent of the processor speed of the Computer usedriahe software; it
consistently measures what it is supposed to meashich is an indication that the metric is rel@brhis is in line with

attributes that characterize effective Softwareritg{both the derived metrics and the measurddahd to it) [12]

4, Conclusion

We have used just one application to test our mbdehuse Software developers will not release #ioédnd of their
Software and without it we cannot run the progrsfost importantly, what we needed was to show thatgroposed metric
is independent of the processor speed of the Camped to run the Software hence we have usedlififeent Computers
with different processor speeds to run the samécapipn to show the consistency of the proposettiman measuring what
it is proposed to measure. The obligation to meaSwoftware power in order to improve our underdtanaf it is as
powerful in software engineering as it is in angaifline. This is like challenging previous assuim and ideas or concepts
related to Software power and its use in the Sao#tveammunity. Gilb [2] wrote, “Control over our adty is proportional to
our ability to measure.” It is desirable to knownhtusable, maintainable, reliable etc.” a Softwpreduct is. By being able
to also measure the power of a Software produst, @ssociated with it may be monitored and benefits liabilities may
become more visible.

Based on this, we suggest that the software deesdagpmpute the power of the software they devatapdisplay same
on the product as well as the cost associateditathin other engineering products to:

» Indicate the quality of the product and

» Form a base line for estimation [6].

References

[1] N.E. Fenton and S.L. Pfleeger (1997), “SoftwaMetrics” A Rigorous and Practical Approach, secdgdition PWS
publishing company.
[2] T. Gilb (1975), “Software Metrics: State of thet,” Computer Weekly, September 11, 1975, p.6.
[3] C.R. Symons (1988), Function Point Analysis:ffibulties and Improvements, in IEEE Transactions $oftware
Engineering [ISE] vol.14, pp.2 — 11.
[4] R.G. Green (1990), Improving Software qualitgteps to Software quality”. pp.1-12. Available lore at
http://www.robelle.com/quality.html.

[5] R.S. Pressman (2001), Software Engineeringracftioner's Approach,"5Edition McGraw Hill. pp. 81 — 89.
[6] D. Calvert (1996) “Software Metrics”. Pp.1 —Available online ahttp://hebb.cis.ugguelph.ca/deb/27320metrics1.html,
[7] M.L. Cook (1982), Software Metrics: An Introdicn and Annoted Bibliography. In ACM SIGSOFT Swudire
Engineering Notes vol. 7, Issue 2 (April). Pp 80-
[8] V.V.N. Akwukwuma and E.O. Onibere (2010) “Metrifor Measuring Software Power” Journal of the Nige
Association of Mathematical Physics. Vol. 17 Novemlpp.353-358.
[9] FPCPM. (1999) Function Point Counting Practidéanual, Version 4.1,
January. 104 pp available onlinehdip://www.ifpug.org/publications/manual.htm
[10] D. Longstreet (2004) Function Point Analysigifing Course. Longstreet Consulting Inc. 11 ppaifable online at
http://www.SoftewareMetrics.Com
[11] L. Briand, S. Morasca and V. Basli (1996), 6perty Based Software Engineering Measurement.EIEEansactions on
Software Engineering, vol. 22, no.1.pp. 68-86, Jan.
[12] L.O. Ejiogu (1993), Five Principles for the frmal Validation of Models of Software Metrics. ACBIGPLAN Notices,
vol. 28, No. 8, August. Pp. 67-76.

Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 429 — 434

434

