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Abstract

This paper proposes a rule for optimizing a prediet discriminant function (PDF) in
discriminant analysis (DA). In this study, we caetl out a sequential-stepwise analysis on
the predictor variables and a percentage-N-fold ssevalidation on the data set obtained

from students’ academic records in a university ®m. The hit rates, P(a) result
obtained for the optimized PDF, &pr calibrated on training and validation sets, when
compared with that of PDF, Z obtained using the agmtional rule, showed a significant
improvement in terms of how well each PDF class#fieases into values of the categorical
dependent. It was also discovered that the optimhiP®F, Zopr) produces consistent high
hit rates with little variability, thereby reducin¢ghe problem of overfitting.

Keywords: Optimal Predictive function, Overfitting, sequehttepwise analysis, percentage-N-fold
cross-validation

1. Introduction:
Discriminant analysis (DA) is a classical statigticnethod used to classify observations into pieddfgroups with respect to
several underlying variables. Typically, a discniamt function is developed using observations Witbwn group membership and
this is then used to classify observations withnawn group membership. DA computes an optimal foangation by minimizing
the within-class distance and maximizing the betwelass distance simultaneously, thus achievingimam class discrimination.
DA has two sets of procedures: they are predictiseriminant analysis (PDA) and descriptive diséniamt analysis (DDA). These
two procedures are based on purpose of analysiDM the focus is on classifying subjects into ohseveral groups, whereas in
DDA the focus is on revealing major difference agéme groups [18].

Professionals in various fields of human endearerregularly faced with the problem of making jctdn. When the
criterion for prediction involves one or more piedi variables alongside with a categorical criteyisuch prediction will call for
the use of predictive discriminant analysis. Over years, various methods of optimizing PDF (or imé&ing the actual hit rate,

P(a) ) and/or predicting the fit of a PDF to a hypoitetvalidation sample have been developed. Thedade stepwise methods
[4, 10, 12, 14, 20, 21], all-possible subset apgindq, 13, 17, 20], hold-out sample method [3, 18peated random sub-validation
method [15, 22, 23], leave-one-out cross-validafibn6, 7, 8, 19] and the K-fold cross-validatiad®, 6]. In most cases, these
methods produce an overly optimistic estimate efgiccess of classification otherwise known asfittieg, an indication that the
PDF obtained by these methods are often less thiama.

In discriminant analysis, a predictive discrimibdunction can be optimized by sorting/getting thest training sample

from the historical sampleD,, which involves cleaning the historical sample émove potential errors such as outliers. This

procedure is analogous to optimizing a decisiorstre classification trees in particular) which iwes decreasing the level of
impurity, which results in having terminal node (arde) with only one response value- see [16]. He same vein, using
computation (as in data-driven procedures) in pteEfomathematical analysis to obtain empirical eates of performance in PDA
can also be used in predictive discriminant analisifine tune the discriminant weights over andvabtraining sample. While the
sheer volume of the data-driven methods developed the years may be impressive, the applicatiomese methods in PDA in

particular, mainly focused on either obtaining girnal combination of predictor variables in ordermaximize hit rate,P(a)or
in predicting the fit of a PDF to a hypotheticaligation set.

In this study, we propose a new rule that willimize the PDF using computation in place of mathiggabanalysis. The
predictive power of the optimized PDFgry was determined by comparing its predictive peremoe with the PDF, Z obtained
using the conventional rule.

“Corresponding authoriduseri A: E-mail: augustineiduseri@yahoo.com, Tel: (+2348023713364 3 E.)
Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 373 - 380

373



Efficient Data-Driven Rule for Obtaining an Optimal... Osemwenkhae and lduse¥iof NAMP

2.0 The Proposed Rule
The proposed rule we present in this work involadsvo stage analysis. The second stage of the pedpale involves
carrying out a percentage-N-fold partitioning of tthata set and will therefore be referred as theep¢age-N-fold cross-validation

rule (NFCV;). In the first part of the analysis, for a datatbat consists of N sampﬁxi, Yi ) where X D{l, 2,..., p} denote

the corresponding predictor variable Iaby],D{l, 2,..., K} denote the corresponding group label, p is thebmurmof predictor
variables, and K is the number of groups. The dwthix is given as

X :[xl, X5, .,xp] 1)
We obtain the data matrix for the potential premtistariables (control variable) as
[ | u] 0
X —|_X1,X2,...,XPJ 2

The difference in the hit raté?(a) between the control variables, %nd the test variables, X-¥dicates the explanatory effect of
the test variable over and above the set of comtnaibles. The subsets of the historical samplg,with the highest hit rateP(a)

will now be chosen as the new historical sam[lill?’:, . From the historical sample[)*N we compute a PDF, Z given by

Z=u X, +u, X, + ..o +u X,

=1 (DN) @)
where Z is the linear discriminant functionl; is the discriminant weightX; is the predictor variables ang (DN) indicates

that the PDF is calibrated on selected predictaaies from a pool of identified predictor variabl
For the second part of the analysis, a percentafmeN\cross-validation on the data set, which ma&ification of the K-fold cross-
validation [6] was carried out in order to fine éuthe discriminant weights or make stable the Pi2ér and above the historical

sampleD,, .
The outline of the percentage—N-fold cross-valmaNFC\V) procedure is given as follows:
Stepl: Obtain a training set,(t) as a percentage of the historical samﬂéq,

Step2: For each training samp@,,(\}) obtained in stepl, computé€ = U(D,(\})) and obtain it’sP(a) on the Historical sample,

*

DN
Step3: Repeat steps 1-2 using percentage valui 0, 80 and 90 respectively. The optimize mtadd function, Zopr) is the
function with discriminant weights, u having the best matching performance on its imginsample, Dg)and the

historical sampIeD; . The optimized PDF is given as

Zpry = U1 Xy +U2 X+ .. o +Up X,
- 5 (pW
=1 (DN) (4)

where theU'Sare the discriminant weights with the best matchiegformance. This discriminant Weighttl,* becomes the

estimate of the true values that would be fourtiéfobservation set were comprised of all membktiseopopulation.

The work of [8, 11] opined that predictive funet®owith few predictor variables, relative tq,Dyield relatively more
accurate and more precise estimators. Buildingiasef predictive functions and measuring the geentince of each predictive
function, we can see which predictive function teslin the best matching performance [16].

3.0 Method of Evaluation of The Proposed Rule
In order to determine the efficiency of the ruleptpredictive discriminant functions (PBFare built. The first PDF was

built using the conventional rule and the second luailt using our proposed rule. The data (histrsample,D,, ) for this study

were obtained from students’ academic records @@ dnd 200 levels, in the Department of Statisiita University system as
shown in Table 1 (extract from [5]). In the firshge of data collection, two groups of studentieims of their graduating class of
degree were formed, and nine predictor variablesuding the following: overall GPA for 100 levegjtades in all the statistics and
mathematics core courses.

In using the conventional approach, the taskptihtizing the PDF (maximizing hit ratE’,(a)) begins with the researcher
obtaining an optimal combination of the predictariables when the number of predictor variablesiise than two. Using the
forward stepwise analysis, we found that the GPA &nA 202 made significant independent and combawedributions. In order
to confirm the GPA and STA 202 as the best sulifdtse predictor variables using the forward stegamnalysis, we then used an
“all-possible subsets” approach which gave the sawelt [9, 20]. We use an arbitrary linear combaoragiven by

Z=uX, +u,X, (5)
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To determine the vector of discriminant weightin equation (5), we compute the inverse of the @d@um of squares and cross
products matrix\WV given by

- 1
wt=_—
W

: { 0.031770626 —0.00066257?

C, whereC is the adjoint of W

| -0.000662576 0.000097068
The deviation of Group 2 centroid from Group 1 ceictis given by

d = |:XlGl - XlGZj|

Xoe1 ~ Xaeo
_[11265
- |16.0167
So that the estimate of the vector of discriminaaights,U becomes
4 0.02517732
u=W—d =
0.00080831
While the standardized vector of discriminant wésglhl is given by
o= Y 1.345
s =
JUu'su 0.043

Substituting the above values dfinto equation (5), we obtain the PDF, Z given by
Z = 1.345(GPA) + 0.043(STA201) ©)

In using our proposed rule, the analysis involyes stages just as we have in the conventionalcembr. The first stage
which is a pre-analysis to the second stage, im#barrying out a sequential stepwise analysiierptedictor variables, in order
to obtain optimal combination of the predictor adles without dropping an important predictor Valegs). For the data set in
Table 1, the students GPA and STA 202 were alsdvtioepredictor variables that made significant ipeiedent and combined
contributions when a sequential stepwise analysis @one on the predictor variables. The secona sta@lves carrying out a
percentage-N-fold cross-validation (NFGMon the data set. Using the outline of our propgasde (NFCVp), we then build the
optimized PDF, Zopr) by carrying out the following steps:

Stepl: Obtain a training setl (t) as a percentage of the historical samﬂéq,

Step2: For each training sampIdD,(\}) obtained in stepl, compuié = /7(D,(\})) and obtain it’sP(a) on the Historical sample,
D,

Step3: Repeat steps 1-2 using percentage values of 6807and 90 respectively

Tables 2 present value of discriminant weightsnd autoff points, £ obtained for different percentage values of thstdnical

sample in Table 1. While Table 3 present summarjiofates, P(a) results for each PDF calibrated on the trainieg i;(t)
obtained from different percentage values of tistohnical sample in Table 1.The number outside theket in each row of the first
column of Tables 2 and 3 indicate the percentadeevand the number of training samples obtaineddam the different
percentage values used. The optimize predictivetiom Zopr is the function with discriminant weights, (whose values are
written in bold case in Table 2) having the bestamiag performance on its training samp,(\f)and the historical sampIeD*N

.The optimized PDF is given as

Z opr) = 1.277 (GPA )+ 0.045 (STA 201) @

To assess the predictive power of the optimize ,RPI{pr) (7) obtained using our proposed rule over aboeePbF, Z (6)
obtained using the conventional rule, the two PdEre validated using thé(t), and | (V). Table 4 present summary of hit rates,

P(a) for both the PDE, while Figures 1 to 4 present the line graphgHertwo sets of values in Tables 4.

4.0 Discussion of Results
Figure 1 reveals that the validation hit rates espnted by the red line are more dispersed or ciesized with high
degree of overfitting compared to the trainingrhies represented by the blue line. This is arcatitin that the PDF, Z obtained

using the conventional rule produces an overlymigtic estimate of hit rateE’,(a) when tested on the data that gave its birth. If we
look intently at Figure 1, we found that this ovieirig problem was more obvious for validation sa@s®2, 11, 15, 17 and 21,
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compared to that of their corresponding traininghgi@s. In Figure 2, the overfitting problem was pdetely eliminated for
validation samples 2, 15, and 21, when PDbr#was tested on these samples. Also in Figure 1,

we observed that the hit rates for validation sa&s@, 11, 15, 17 and 21 fell below the 80 percéniate mark when the PDF, Z
was tested on these validation samples. Whilegurei 2, only two validation samples hit rates elow 80 percent hit rate mark
when PDF, %pr) was tested on the validation sets,

This reduction in the number of validation sampléth low hit rates is due to the fact that oveirfig was kept at minimal
when our proposed rule was used in building the FPIpr, When we tested the two PBén the training sets and validation sets
separately as shown in Figure 3 and Figure 4 wehad the same predictive performance when testetie training sets, except
for sample 19 as shown in Figure 3. Judging froism $hme predictive performance obtained for the B#s when tested on the
training set, as shown Figure 3, one would haveeetgal the same results for validation sets in Eigyrbut the reverse was the
case. When we validated the two RDISing a test sample (see Table 1) independehedfaining sample, the optimized function,
Zopmy produced a higher hit rate of 82.4, compared &b dfi the PDF, Z with a hit rate of 76.5 as showTable 4 written in bold
case. This goes to further prove that the optimesdiictive function, &er) that was build using our proposed rule did noyonl
produce consistent high hit rate with little varigp, but perform better in terms of predictiverfigmance.

5.0 Conclusions

Despite the sheer volume of contributions to DAtle literature, it is obvious that the major cdmitions to DA
(especially in PDA), are variable selection methaddidation, and cross-validation methods. Non¢hese methods or rules here
are able to keep the problem of overfitting at miai. In this work, a rule for obtaining an optinRDF, which is stable enough to
produce consistent high hit rates with little vhaiiigy, thereby reducing the problem of overfittingas presented. The predictive
performance of the optimized PDF#r alongside the PDF, Z obtained using the conveationle was evaluated using the

training and validation sets obtained from thedrisal sample,D*N , as well as an independent test sample. It wasmdated that

the optimized PDF, &pr built from our proposed rule was better in terrhshe precision with which it correctly classifiest of
observations or future samples from the same ptipala

Table 1: Historical Sample
HISTORICAL SAMPLE TEST SAMPLE
VALUES OF GPA AND STA 201 FOR TWO GROUPS VALUES @PA AND STA 201 FOR TWO
GROUPS
GROUP 1 (5= 60) GROUP 2 (5= 60) GROUP 1(fF22 GROUP 2 (n=12)
NO | GPA | STA| NO | GPA | STA|NO | GPA | STA|NO | GPA | STA [ NO | GPA | STA|NO | GPA | STA
201 201 201 201 201 201
1 211 | 34 |31 [330 [56 [1 157 | 34 |31 219 [ 28 [1 289 [ 80 |1 211 | 58
2 341 | 57 |32 [202 [ 65 |2 154 | 50 |32 1.86 | 47 |2 362 | 76 |2 219 | 61
3 244 | 46 |33 286 | 64 |3 2.27 | 40 | 33 232 | 44 |3 346 | 78 |3 1.49 | 60
4 265 | 42 |34 [330 | 67 |4 108 | 15 |34 [3.08 [ 40 |4 338 | 75 |4 2.57 | 40
5 235 | 50 |35 [338 [32 |5 111 | 21 |35 122 | 27 |5 257 | 57 |5 1.86 | 40
6 308 | 70 |36 [272 [ 55 |6 156 | 40 |36 133 | 24 |6 346 | 63 |6 1.97 | 43
7 335 | 70 |37 [237 [ 54 |7 219 | 47 |37 278 | 46 |7 3.00 | 63 |7 2.08 | 49
8 314 | 56 |38 [203 [ 71 |8 1.76 | 64 | 38 181 | 52 |8 178 | 71 |8 1.86 | 58
9 4.00 | 67 |39 [214 |53 |9 257 | 40 |39 181 | 52 |9 330 | 68 |9 2.63 | 50

10 2.89 | 40 |40 378 | 62 |10 235 | 46 | 40 297 | 61 10 232 | 67 |10 221 | 41

11 270 | 53 |41 205 | 58 |11 211 | 40 [ 41 2.14 | 40 11 246 | 42 |11 141 | 24

12 3.05 | 57 |42 359 | 53 |12 1.76 | 64 | 42 2.20 | 46 12 292 | 66 |12 189 | 61

13 238 | 43 |43 335 | 64 |13 1.06 | 21 |43 189 | 43 13 341 | 55

14 346 | 73 | 44 213 | 56 |14 197 | 44 | 44 256 | 41 14 211 | 67

15 392 | 69 |45 281 | 63 |15 278 | 45 |45 281 | 36 15 1.68 | 69

16 257 | 53 | 46 232 | 67 |16 114 | 46 | 46 159 | 37 16 241 | 62

17 395 | 79 |47 411 | 66 | 17 243 | 50 | 47 1.92 | 40 17 159 | 77

18 373 | 73 |48 [4.08 | 63 |18 251 | 48 | 48 197 | 43 18 3.37 | 53

19 3.68 | 65 |49 3.27 | 60 |19 2.00 | 33 |49 2.05 | 40 19 2.89 | 65

20 3.11 | 40 |50 378 | 53 |20 216 | 41 |50 1.87 | 40 20 1.70 | 56

21 319 | 45 |51 251 | 56 |21 133 | 40 |51 164 | 28 21 243 | 79

22 3.08 | 59 |52 341 | 62 | 22 227 | 24 |52 1.97 | 50 22 2.00 | 59

23 281 | 53 |53 349 | 60 |23 122 | 40 |53 2.81 | 53

24 289 | 60 |54 235 | 48 | 24 149 | 41 |54 1.68 | 62

25 351 | 60 |55 2.00 | 49 |25 195 | 52 |55 1.81 | 48

26 359 | 64 |56 322 | 52 | 26 143 | 42 | 56 2.03 | 41

27 359 | 57 |57 332 | 46 | 27 1.78 | 41 | 57 189 | 35

28 359 | 62 |58 319 | 71 | 28 2.08 | 56 | 58 249 | 45

29 254 | 51 |59 3.16 | 58 | 29 124 | 29 |59 1.19 | 40

30 243 | 56 | 60 3.86 | 62 | 30 176 | 25 | 60 112 | 41

Source: Extract from Erimafa et al. (2009)
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Table 2: Values of discriminant weights and cutoff marks for different pergentalues of the historical
sample

Percent of Discriminant Weights Cutoff Percent of Discriminant Weights Cutoff
Historical Marks Historical Marks
Sample Function Sample Function
1 1
60 (2) GPA 1.074 90 (10) GPA 1.301
STA 202 0.077 6.5526 STA202 0.054 6.0130
GPA 1.843 GPA 1.204
STA202 0.007 4.9057 STA202 0.051 5.4732
70 (3) GPA 1.205
STA202 0.072 6.5655 GPA 1.400
STA202 0.048 5.8096
GPA 1.257
STA202 0.041 5.2228 GPA 1.275
STA202 0.044 5.3787
GPA 1.654
STA202  0.023 5.1775 GPA 1.293
STA202 0.045 5.4477
80 (5) GPA 1.137
STA 0.063 6.0075 GPA 1.401
STA202 0.038 5.3853
GPA 1.328
SAT202 0.045 5.6615 GPA 1.485
STA202 0.036 5.2172
GPA 1.343
STA202 0.040 5.3479 GPA 1.496
STA202 0.032 5.2746
GPA 1.691
STA202 0.022 5.2510 GPA 1.277
STA202 0.045 5.3834
GPA 1.262
STA202 0.044 5.3063 GPA 1.333
STA202 0.042 5.4042
Table 3: Summary of classification results for each PDF calibrated

on training set obtained from different percentage
values of the historical sample

% of Historical Sample | % of Training Sample | % of Historical Sample
Correctly Classified Correctly Classified
60 (2) 90.3 86.7
86.1 80.8
70 (3) 90.5 85.8
82.1 85.8
89.3 84.2
80 (5) 88.5 85.0
86.5 87.5
84.4 85.8
88.5 84.2
87.5 87.5
90 (10) 88.0 85.8
85.2 86.7
88.0 86.7
86.1 87.5
86.1 87.5
86.1 85.8
88.0 85.8
85.2 85.0
87.9 87.5
87.0 87.5
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Table 4: Summary of hit rate results for PDF, Z and PDopr) calibrated on  training and validation se
obtained from historical sample
PDF, Z PDF, Zop1)
Results for Results for Validation Results for Results for
Training Set Set Training Set Validation Set

87.5 87.5 87.5 87.t
87.5 43.8 87.5 87.t
89.3 83.3 89.3 83.%
83.3 97.2 83.3 97.z
90.5 80.6 90.5 80.¢
88.5 83.3 88.5 83.%
86.5 91.2 86.5 91.7
85.4 95.8 85.4 95.¢
89.6 79.2 89.6 79.2
87.5 87.5 87.5 87.t
89.8 66.7 89.9 66.7
86.1 100.0 86.1 100.(
88.0 83.3 88.0 83.2
86.1 100.0 86.1 100.(
86.1 50.0 86.1 100.C
87.0 91.7 87.0 91.7
88.0 66.7 88.0 66.7
87.0 91.7 87.0 91.7
88.0 83.3 87.0 83.%
87.0 91.7 87.0 91.7

76.5 82.¢

=—&—Training Set Hit

J Rates
—fli—Validation Set
Hit Rates

1357 9111315171921

Figure 1: Graphical representation of hit rates PDF, Z obtained usingthe conventional rule calibrated
training and validation sets shown in Table
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120
100
80 -
=& Training Set Hit
60 Rates
40 —fl—Validation Set
Hit Rates
20
0 rrrrrrrrrrrr1rr1rrrrrrr
135 7 9111315171921
Figure 2: Graphical representation of hit rates for the optiRDF, zopr) Obtained using the percentag-fold

cross-validation approadfalibrated on training and validation sets as shiowiable :

92
88 4 —&— Training Set Hit
86 Rates for PDF, Z
84
== Training Set Hit
82
Rates for
I 80 PDF, Z(OPT) l
78 rrrrrrrrrrrrrrrrr 111
135 7 91113151719
Figure 3: Graphical representation of Irates for both PDdcalibrated on training sets as shown in colum

and 3 of Table3

. —¢—\/alidation Set
Hit Rates for
y PDF, zZ

== Validation Set
Hit Rates for
PDF, Z(OPT)

1 35 7 9111315171921

Figure 4: Graphical representation of hit rates for both s calibrated
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