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Abstract 

 
In this paper, the selection procedure of the order of an autoregressive 

process of order P, AR(p) using the information order selection criteria is 
considered. We compare the performance of three information criteria 
methods, the Akaike information criterion (AIC), Schwarz information 
criterion (BIC) and Hannan & Quinn information criterion (HQC). It is 
observed that the ability of a criterion to select the true order may depend on 
the coefficient(s) of the process. A special AR(2) process where these three 
criterion appears to select the true order with equal probability is also 
identified. A Monte-Carlo experiment is used to demonstrate the procedure.   

. 
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1. Introduction: 

In order to estimate the parameters of an AR(p) model, it is appropriate to estimate the maximum order, p of the process. 
If an order lower than the true order of the process is selected the estimate of the parameters will not be consistent, if higher order 
is selected the variance increases, [14]. The identification of the order of a stationary Box-Jenkins time series model has been 
crucial in the literature. Two main approaches have been considered. One is the use of the sample autocorrelation function 
(SACF) and the sample partial autocorrelation function (SPACF). Example references can be found in [2, 3, 7] and a host of 
others. The second approach is based on the use of information order selection criteria which involves the use of an order 
selection based on the minimisation of some given functions expressed in terms of the order p of the model. These information 
criteria has been studied independently by [1] which is called Akaike information criterion (AIC), [13] which is called Schwarz 
information criterion (SIC) and [6] which is called Hannan and Quinn information criterion (HQC). Other authors that have also 
studied and supported these criteria in one way or the other are [5, 8, 14, 15] and a host of others. Liew [9], Liew and Chong [10] 
show in a simulation study the consistencies of these order selection criteria even in presence of ARCH errors. A purpose of this 
study is to present an alternative way of assessing the performance of these order selection criteria by considering simple AR(p) 
processes which are commonly encountered in practice.    

The rest of the paper is organized as follows: in Section 2, the methodology is described; Section 3, simulation 
experiments and results are given while Section 4 concludes the work. 
2. Methodology 

Consider a stationary time series { }yt which satisfies the following linear equation:
 

tptpttt yyyy εααα ++++= −−− L2211      (1.1) 

for some integer ;1≥p pααα ,,, 21 L  are real parameters such that the zeroes of the polynomial 

p
p zzz ααφ −−−= L11)(  lie outside the unit disk and ε t  constitute a sequence of independent random variables with the 

same normal distribution N ( , )0 2σ ε .  

As highlighted by [4], this simple model given in (1.1) often turns out to be very useful for descriptive and forecasting purposes. 
The order p of the process is very important and is usually unlikely to be large for many financial returns while it can take large 
value for volatility models. After the order of the process is identified, then the next stage is estimation of the parameters which is 
usually done either by the Yule-Walker or the least squares method and followed by test of  
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model adequacy which is usually referred to as diagnostic checking such as in Ljung and Box (1978), McLeod and Li (1983) and 
a host of others. 

Using the idea of [9], the following lag order selection criterion is considered in this study: 

Akaike information criterion, pnpAIC p 2ˆlog)( 2 += σ     (1) 

Schwarz information criterion, )ln(ˆlog)( 2 npnpSIC p += σ     (2) 

Hannan-Quinn criterion , )]ln[ln(2ˆlog)( 2 npnpHQC p += σ     (3) 

where in all cases, ∑
+=

−−−=
n

pt
tp pn

1

212 ˆ)1(ˆ εσ       (4) 

and the sequence }ˆ{ tε   is the residuals generated from the fitted model for a particular order p.  

 We compute the probability of each of these criteria in its ability to pick the true order of the AR(p) process and call it 
P(True order). Whenever it is unable to pick the true order, then it is either a lower order is picked or a higher order than its true 
order is picked. The probability associated with a lower order will be denoted by P(Under estimation) while that of a higher order 
will be denoted by P(Over estimation). These order estimation is carried out for a 1000 simulation. In this regard, if p̂ is the true 

order of the process, then the three probabilities will be calculated thus;  
(i) P(True order) = Mpp /)ˆ(# =        (5) 

(ii) P(Under estimation) = Mpp /)ˆ(# <       (6) 

(iii) P(Over estimation) = Mpp /)ˆ(# >        (7) 

where M  denote the number of Monte-Carlo experiment and )(# • denote the number of times event )(• happens. 

3.  Simulation experiments and results 

For illustrative purposes, we consider the following Data generating process (DGP). Models I and II are examples of an 
AR(1) and AR(2) processes respectively.  
Model (I) 0, 011 =+= − yyy ttt εφ       (8)  

Model (II) 0,75.0 0221 =++= −− yyyy tttt εα
     

(9) 

In Model I, the parameter 1φ  varies from -0.9 to 0.9 with an increment of 0.1 but 1φ  does not take the value 0 because the process 

will be a white noise. In Model II, the parameter 2α  takes on the values -0.5, -0.25, 0.25 and 0.5 respectively. 

In order to demonstrate the ability of these information order selection criteria to correctly select the true order, we 
simulate artificial time series data using Model I and Model II for each of the parameter(s). The sequence of error }{ tε  which is 

normally distributed with mean 0 and variance 1 was generated using the random number generator in MATLAB 7.5.0 which 
were in turn used in generating artificial time series data. We generated )300( n+  sample sizes. Only the last n  observations 

are used for modelling while the first 300 are discarded to minimize initialization effect. Sample sizes of n = 25, 50 and 100 was 
considered in this study. The model identification and parameter estimation was written and executed in MATLAB 7.5.0, using 
simple MATLAB codes. The procedure is replicated 1000 times and the results are displayed in Tables 1, 2, 3 for Model I and 
Tables 4, 5, 6 and 7 for Model II. In addition, Figures 1, 2 and 3 give graphical representations of the p(True order) for the three 

criteria using Model II when parameter 2α  is varied for sample sizes n = 25, 50 and 100 respectively.   

   

Table 1: Monte-Carlo study using Model I for sample size n = 25 

1φ  AIC  SIC  HQC  
1φ  AIC  SIC  HQC  

-0.9 0.744 
(0.256) 

0.861 
(0.139) 

0.782 
(0.218) 

0.1 0.698 
(0.302) 

0.813 
(0.187) 

0.741 
(0.259) 

-0.8 0.748 
(0.252) 

0.847 
(0.153) 

0.785 
(0.215) 

0.2 0.723 
(0.277) 

0.838 
(0.162) 

0.766 
(0.234) 

-0.7 0.746 
(0.254) 

0.862 
(0.138) 

0.782 
(0.218) 

0.3 0.695 
(0.305) 

0.815 
(0.185) 

0.731 
(0.269) 

-0.6 0.733 
(0.267) 

0.849 
(0.151) 

0.772 
(0.228) 

0.4 0.729 
(0.271) 

0.827 
(0.173) 

0.752 
(0.248) 

-0.5 0.714 0.829 0.760 0.5 0.724 0.835 0.756 
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(0.286) (0.171) (0.240) (0.276) (0.165) (0.244) 
-0.4 0.732 

(0.268) 
0.850 

(0.150) 
0.766 

(0.234) 
0.6 0.715 

(0.285) 
0.834 

(0.166) 
0.747 

(0.253) 
-0.3 0.731 

(0.269) 
0.846 

(0.154) 
0.771 

(0.229) 
0.7 0.731 

(0.269) 
0.830 

(0.170) 
0.758 

(0.242) 
-0.2 0.726 

(0.274) 
0.828 

(0.172) 
0.754 

(0.246) 
0.8 0.718 

(0.282) 
0.834 

(0.166) 
0.755 

(0.245) 
-0.1 0.715 

(0.285) 
0.836 

(0.164) 
0.753 

(0.247) 
0.9 0.722 

(0.278) 
0.841 

(0.159) 
0.763 

(0.237) 
 

Table 2: Monte-Carlo study using Model I for sample size n = 50 

1φ  AIC  SIC  HQC  
1φ  AIC  SIC  HQC  

-0.9 0.791 
(0.209) 

0.928 
(0.072) 

0.865 
(0.135) 

0.1 0.732 
(0.268) 

0.889 
(0.111) 

0.808 
(0.192) 

-0.8 0.755 
(0.245) 

0.892 
(0.108) 

0.824 
(0.176) 

0.2 0.744 
(0.256) 

0.888 
(0.112) 

0.808 
(0.192) 

-0.7 0.739 
(0.261) 

0.890 
(0.110) 

0.812 
(0.188) 

0.3 0.772 
(0.228) 

0.916 
(0.084) 

0.838 
(0.162) 

-0.6 0.760 
(0.240) 

0.888 
(0.112) 

0.831 
(0.169) 

0.4 0.741 
(0.259) 

0.893 
(0.107) 

0.819 
(0.181) 

-0.5 0.782 
(0.218) 

0.911 
(0.089) 

0.846 
(0.154) 

0.5 0.744 
(0.256) 

0.896 
(0.104) 

0.798 
(0.202) 

-0.4 0.740 
(0.260) 

0.890 
(0.110) 

0.812 
(0.188) 

0.6 0.749 
(0.251) 

0.892 
(0.108) 

0.816 
(0.184) 

-0.3 0.741 
(0.259) 

0.899 
(0.101) 

0.823 
(0.177) 

0.7 0.789 
(0.211) 

0.920 
(0.080) 

0.855 
(0.145) 

-0.2 0.756 
(0.244) 

0.886 
(0.114) 

0.823 
(0.177) 

0.8 0.742 
(0.258) 

0.895 
(0.105) 

0.813 
(0.187) 

-0.1 0.765 
(0.235) 

0.910 
(0.090) 

0.833 
(0.167) 

0.9 0.768 
(0.232) 

0.910 
(0.090) 

0.838 
(0.162) 

 
     Table 3: Monte-Carlo study using Model I for sample size n = 100 

1φ  AIC  SIC  HQC  
1φ  AIC  SIC  HQC  

-0.9 0.749 
(0.251) 

0.930 
(0.070) 

0.851 
(0.149) 

0.1 0.778 
(0.222) 

0.938 
(0.062) 

0.863 
(0.137) 

-0.8 0.769 
(0.231) 

0.920 
(0.080) 

0.852 
(0.148) 

0.2 0.759 
(0.241) 

0.922 
(0.078) 

0.848 
(0.152) 

-0.7 0.782 
(0.218) 

0.930 
(0.070) 

0.872 
(0.128) 

0.3 0.764 
(0.236) 

0.919 
(0.081) 

0.863 
(0.137) 

-0.6 0.781 
(0.219) 

0.951 
(0.049) 

0.868 
(0.132) 

0.4 0.769 
(0.231) 

0.936 
(0.064) 

0.856 
(0.144) 

-0.5 0.741 
(0.259) 

0.917 
(0.083) 

0.827 
(0.173) 

0.5 0.734  
(0.266) 

0.929  
(0.071) 

0.830  
(0.170) 

-0.4 0.749 
(0.251) 

0.921 
(0.079) 

0.855 
(0.145) 

0.6 0.766  
(0.234) 

0.929  
(0.071) 

0.853  
(0.147) 

-0.3 0.765 
(0.235) 

0.936 
(0.064) 

0.853 
(0.147) 

0.7 0.781  
(0.219) 

0.934  
(0.066) 

0.871  
(0.129) 

-0.2 0.771 
(0.229) 

0.937 
(0.063) 

0.859 
(0.141) 

0.8 0.779  
(0.221) 

0.940  
(0.060) 

0.866  
(0.134) 

-0.1 0.730 
(0.270) 

0.923 
(0.077) 

0.841 
(0.159) 

0.9 0.773  
(0.227) 

0.937  
(0.063) 

0.861  
(0.139) 

 

 Tables 1, 2 and 3 represents simulation studies using the three information criteria in identifying the order of AR(1) process for 

sample sizes n = 25, 50 and 100 respectively for Model I using the parameter value 1φ  ranging from -0.9 to 0.9.  The upper values 

represent P(True order) while the values in bracket represent P(Over estimation).  
Table 1 reveals that the AIC is able to identify the true order in about 72% of the experiment, the SIC is about 83% while 

HQC is about 75%. Then in Table 2, the AIC account for more than 75% in its ability to pick the true order, the SIC account for  
Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 357 – 362   
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about 90% while the HQC is about 82%.  
In Table 3, the AIC manages to pick the true order in about 75%, the SIC is about 93% while that of HQC is about 85%.  

Table 4: Monte-Carlo study using Model II for parameter 2α  = -0.5 
 

Criteria P(True order) P(Under estimation) P(Over estimation) 
 Sample size n = 25 

AIC  0.879 0.111 0.010 

SIC  0.827 0.168 0.005 

HQC  0.864 0.129 0.007 

 Sample size n = 50 

AIC  0.985 0.015 0 

SIC  0.955 0.045 0 

HQC  0.974 0.026 0 

 Sample size n = 100 

AIC  1.000 0 0 

SIC  0.999 0.001 0 

HQC  1.000 0 0 

 

Table 5:  Monte-Carlo study using Model II for parameter 2α  = -0.25 
 

Criteria P(True order) P(Under estimation) P(Over estimation) 
 Sample size n = 25 

AIC   0.542  0.443  0.015 

SIC   0.401  0.592  0.007 

HQC   0.501  0.486  0.013 

 Sample size n = 50 

AIC   0.708  0.287  0.005 

SIC   0.501  0.499  0 

HQC   0.633  0.364  0.003 

 Sample size n = 100 

AIC   0.895  0.105 0 

SIC   0.717  0.283 0 

HQC   0.829  0.171 0 

 

Table 6: Monte-Carlo study using Model II for parameter 2α  = 0.25 
 

Criteria P(True order) P(Under estimation) P(Over estimation) 
 Sample size n = 25 

AIC  0.237  0.702  0.061 

SIC  0.137  0.836  0.027 

HQC  0.212  0.739  0.049 

 Sample size n = 50 

AIC  0.434  0.525  0.041 

SIC  0.243  0.747  0.010 

HQC  0.345  0.631  0.024 

 Sample size n = 100 

AIC   0.733  0.250 0.017 

SIC   0.508  0.488 0.004 

HQC   0.645  0.345 0.010 
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Table 7: Monte-Carlo study using Model II for parameter 2α  = 0.5 
 

Criteria P(True order) P(Under estimation) P(Over estimation) 
 Sample size n = 25 

AIC  1.000 0.000 0.000 

SIC  1.000 0.000 0.000 

HQC  1.000 0.000 0.000 

 Sample size n = 50 

AIC  1.000 0.000 0.000 

SIC  1.000 0.000 0.000 

HQC  1.000 0.000 0.000 

 Sample size n = 100 

AIC  1.000 0.000 0.000 

SIC  1.000 0.000 0.000 

HQC  1.000 0.000 0.000 

 

       

         Figure 1: The ( p(r)= p(true order)) for  
          ( apha = 2α = -0.5, -0.25, 0.25, 0.5)  
          when sample n = 25. 

                              

Figure 3: The ( p(r)= p(true order)) for 
 ( apha = 2α = -0.5, -0.25, 0.25, 0.5)  
when sample size n = 100. 
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Figure 2: The ( p(r)= p(true order)) for 
 ( apha = 2α = -0.5, -0.25, 0.25, 0.5) when 
sample n = 50. 



362 

 

Some Information Order Selection Criteria in Autoregressive Processes.   N. Ekhosuehi    J of NAMP 
 

Tables 4, 5, 6 and 7 represents simulation studies using the three information criteria in identifying the order of AR(2) 

process for sample sizes n = 25, 50 and 100 in each cases for Model II with lag 1 coefficient 1α  fixed at 0.75 while the lag 2 

coefficient 2α  takes on the values -0.5, -0.25, 0.25 and 0.5.  

In Table 4, the AIC is able to identify the true order in about 88%, SIC 83% and HQC 87%  while the probability of 
under estimation and over estimation are very low for the three criteria when the sample size is n = 25. When the sample size is n 
= 50 and 100 the ability of the three criteria to identify the true order are approximately very high and equal. The probability of 
over estimation stands at zero while that of under estimation is very low and close to zero. 

In Table 5, for sample size n =25, the AIC is able to identify the true order in about 54%, SIC 40% and HQC 50%. For 
under estimation, the AIC is 44%, SIC 59% and HQC is about 49%.  Then for over estimation, the associated probabilities for the 
three criteria are very close to zero. Now when the sample size n = 50 and 100, the three criteria increases in its ability to identify 
the true order while that of under estimation also decreases correspondingly. The probability of over estimation remains zero. 

In Table 6, the ability of the three criteria to identify the true order increases steadily as the sample size increases while 
that of under estimation decreases. For the over estimation, the associated probabilities for the three criteria are also very close to 
zero throughout the sample sizes. 

In Table 7, the ability of the three criteria to identify the true order remains equal with probability 1, irrespective of the 
sample size. Probabilities of their under estimation and over estimation are respectively zero. 

Figures 1, 2 and 3 exhibit the same structures. These Figures reveal that irrespective of the sample size, the three criteria 

are able to identify the true order with high probability when the parameter 2α  is -0.5 and decreases at 2α  = -0.25, 0.25 and 

increases again at 0.5. Furthermore, it is pertinent to mention that when the sample size is small, the AIC and HQC are close in its 
ability to identify the true order. However, for moderate and large sample sizes, the AIC performs better than the others, followed 
by the HQC and then the SIC in its ability to identify the true order for the special AR(2) process considered using equation  (9).    
4  Conclusion 

The study highlights the ability of three popular criteria AIC, SIC and HQC to identity the true order of an AR(1) 
process irrespective of its lag coefficient. It also reveals the superiority of the SIC irrespective of the sample size for the AR(1) 
case. For an AR(2) model, it is observed that when lag 1 coefficient is 0.75 and lag 2 coefficient is -0.5, the three criteria is able to 
identify the true order of the process with equal probability. When the lag 2 coefficient is -0.25 and 0.25, the three criteria 
performs poorly in its ability to identify the true order. However, when the lag 2 coefficient is 0.5, the three criteria perform 
excellently.  
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