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Abstract 

 
The efficacy of the multivariate kernel density estimator is measured by the closeness of kernel density 

estimates f̂  to its true density f . One of the most used measures on the global accuracy of the 

multivariate kernel density estimator is the mean Integrated Squared Error (MISE). In this paper, we 
obtain the generalized higher order optimal bandwidth and the asymptotic mean integrated square error 
(AMISE) for the multivariate kernel density estimator with faster rates of convergence than some of the 
ones in the literature. The advantage is that it enables one to know the speed at which the estimated density 
approaches the true density. 

. 
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1. Introduction: 
Density estimation is the construction of an estimate f̂  of an underlying density function f  for a random variable X from 

observed data. There are two approaches to density estimation: parametric and nonparametric. The parametric ones, e.g. the 
maximum likelihood method, requires assumptions on the form of the unknown density. Though imposing the functional form is 
quite subjective, this does simplify the problem. The only problem is to estimate the parameters of the distributions. Sometimes, 
however, having no additional information about the distribution we  use nonparametric methods such as the kernel density 
estimation. 
 Several other types of nonparametric density estimations have been discussed in the monographs  of  [1, 8, 14]. However, 
concentration will be on the kernel density estimator  due to  its simple mathematical framework and  also its being an important 
technique in exploratory data and confirmatory analyses, and presentation of data-[14]. Only recently , for example, [9] looked at 
kernel density estimation for grouped data with application to line transect sampling.  

 The kernel density estimator, introduced by [12] (for the univariate case), is characterized by two components, the bandwidth h 
and the kernel K . We consider its multivariate version,where the dimension is 2≥d . 
 The general form of the d-dimensional kernel density estimator given in [3] is  
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bandwidth. The scaled and the unscaled kernels are related by 
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 and K is a symmetric probability density function. 

 A bandwidth matrix includes all simpler cases as special cases. Epanechnikov [5] proposed a multivariate kernel density 
estimate in which different bandwidths were suggested for each of the coordinate directions. An equal bandwidth in all direction, 

suggested by [2], as in (1.1) corresponds to dIhH 2= , where dI  denotes the dd ×  identity matrix.  

Using the parameterization ( dIhH 2= ), [2] gave the multivariate kernel density estimator as 
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To use the parameterization (
dIhH 2= ) effectively the components of the data vector should be commensurate. This, according to 

[4, 14, 16], can be achieved if the data are transformed. If this is done, there will be no need to use a more complicated form of the 
kernel density estimator rather than the form involving a single bandwidth as in (1.2). 
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Since the works of [6, 10, 11] have shown that better rates of convergence can be obtained when higher order forms of the 
univariate kernel density estimator are considered, then the issue of higher order forms (as it affects the rates of convergence) in 
multivariate kernel density estimator becomes  the issues we tackled in this paper. Section 2 describes the  

optimal bandwidth ( AMISEh ) and asymptotic mean integrated squared error (AMISE) for the second order multivariate case. 

Section 3 is dedicated to the higher order generalized optimal bandwidth and the asymptotic mean integrated squared error, while 
section 4 contains the conclusion. 
1. The optimal bandwidth and the generalized AMISE for the second order multivariate kernels. 

   One of the most used measures on the global accuracy of (1.2) is the mean integrated squared error (MISE). The derivation 
of the multivariate MISE is analogous to the one-dimensional case. The MISE is given as 
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                       ( )( ) ( )( )∫∫ += xxxx dHfdHfbias ;ˆvar;ˆ2  

Since the MISE does not have a closed form, except if the target density f  is a normal mixture and the choice of K is also 

normal, see [15], finding AMISEH  is generally very difficult. However, an easy way out is to find a tractable approximation to 

the MISE. The Asymptotic Mean Integrated Squared Error (AMISE) can be calculated as 

( ) ( ) ( )( )HfAIVHfAISBHfAMISE ;ˆ;ˆ;ˆ xxx +=    (2.2) 

Another problem of MISE and AMISE is that they depend on the bandwidth in a very complicated way thereby making it 
difficult to interpret the influence of the bandwidth on the performance of the kernel density estimation. These approximations 
have very simple expressions that allow a deeper appreciation of the role of the bandwidth, this is visible in the variance-bias 
trade-off. In addition to the aforementioned is that they can also be used to obtain the rate of convergence in kernel density 
estimation and MISE-Optimal bandwidth.    
     An asymptotic approximation of MISE through the multivariate Taylor series expansion of f  around x  and using the 

assumptions 
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yields a simpler version of MISE for the multivariate kernel as 

( )( ) ( ) ( ) ( )( ) xxx dfHDtrK
Hn

KR
HfAMISE ∫+= 222

24

1
;ˆ

2
1 µ   (2.4) 

where ( ) ( )∫= ww dKKR 2  and ( )xfD2  is the Hessian matrix with respect to x . 

Now, in the case dIhH 2= , equation (2.4) becomes 
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The equation (2.5) is called the asymptotic MISE since it provides a useful large sample approximation to the MISE. 
     By minimizing (2.5) over h, and solving for h, [15] obtained the asymptotic optimal bandwidth and the minimum AMISE of 
order 2 respectively as: 
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Observe that the rates of convergence is of order 4
1

+
−

dn  for the optimal bandwidth and 4+
−

d

d

n  for the minimum AMISE. 
      In the next section , we shall generalize (2.6) and (2.7) which is an improvement to the theorem given by [15]. 

2. Theorem: Assuming that the multivariate kernels satisfy the following moment conditions 
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         where ( )Km2µ  is the ( )thm2  central moment of k (that is ( ) ( )∫= ww dKwK m
im
2

2µ ), and   suppose f is differentiable 

and that the multivariate kernel is of order 2m, then for a general multivariate kernel estimator (1.1) parameterized by dIhH 2= , 

the optimal bandwidth and the global error is given respectively as; 
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where ∞<= ,...,2,1m . 

Proof: 
           Recall that; 

( )( ) ( ) ( ) yyyxx dfKHfE
dR H∫ −=;ˆ  

                ( ) ( ) wwxw dHfK
dR

2
1

−= ∫       (3.1) 

By conditions (i) – (iii) in (3.0) and taking the higher Taylor expansion of ( )2
1

Hf −x  in (3.1) and then substituting into (2.2), we 

obtained the asymptotic integrated squared bias (AISB) as: 

( )( )
( )( )

( ) ( )( )( )∫= xxx dHfDHtrK
m

HfAISB
m

m

222
22

2
1

2
1

!2

1
;ˆ µ  (3.2) 

Also, the asymptotic integrated variance (AIV) for this case is 
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The combination of (3.2) and (3.3) gives 
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Hence the approximately higher-order optimal bandwidth, in the sense of minimizing equation (3.4), becomes 
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Substituting (3.5) into (3.4) and with some algebraic manipulation, we obtained 
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Equation (3.5) and (3.6) are the generalized asymptotic optimal bandwidth and asymptotic mean integrated square error 
respectively of order 2m, ∞<= ,...2,1m . 

 
4.   Conclusion. 
Equations (3.5) and (3.6) provide theoretical results for the generalized optimal and asymptotic mean integrated square error 
(AMISE) of order 2m. It is clear that these results (i.e. (3.5) and (3.6) enable one to find the optimal bandwidth and AMISE of 
symmetric multivariate kernels of any order. We also observe that the  optimal bandwidth as shown in (3.5) converges to zero at 

the rate 
dm

n
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1

 which is faster than that of  order  ��
�

�����   of [15] (see, page 99 of cited reference). 

Moreover, the convergence rate of 
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 was obtained for the generalized AMISE which is faster than that of order 
d

n
+

−
4

4

 of [15] 
(see page 100 of cited reference). However, these rates of convergence are still very slow compared to the univariate case, see [14]. 
These rates become slower as the dimension increases which is as a result of the curse of dimensionality discussed in [8, 13, 15]. 
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