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Abstract

The efficacy of the multivariate kernel density estimator is measured by the closeness of kernel density

esimates f to its true density f . One of the most used measures on the global accuracy of the

multivariate kernel density estimator is the mean Integrated Squared Error (MISE). In this paper, we
obtain the generalized higher order optimal bandwidth and the asymptotic mean integrated square error
(AMISE) for the multivariate kernel density estimator with faster rates of convergence than some of the
onesin the literature. The advantage is that it enables one to know the speed at which the estimated density
approaches the true density.
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1. Introduction:

Density estimation is the construction of an estand of an underlying density functiorf for a random variabl& from

observed data. There are two approaches to dessiiyation: parametric and nonparametric. The pamdnones, e.g. the
maximum likelihood method, requires assumptionshenform of the unknown density. Though imposing thnctional form is
quite subjective, this does simplify the problerheTonly problem is to estimate the parameters efdibtributions. Sometimes,
however, having no additional information about thistribution we use nonparametric methods suclthaskernel density
estimation.

Several other types of nonparametric density edtons have been discussed in the monographsl,d, [L4]. However,
concentration will be on the kernel density estonatiue to its simple mathematical framework aaldo its being an important
technique in exploratory data and confirmatory gs@d, and presentation of data-[14]. Only recentty example, [9] looked at
kernel density estimation for grouped data withligption to line transect sampling.

The kernel density estimator, introduced by [1f2} the univariate case), is characterized by temgonents, the bandwidth
and the kerneK . We consider its multivariate version,where thaefision isd = 2.
The general form of the d-dimensional kernel dgrestimator given in [3] is

f(x;H):n‘li Ky (x= X)) (1.1)

where x = (x,,..., x, )" and X, = (X, X,,.... X,y )".,i =1,..., n. H is a symmetric positive definitdd xd matrix called the
bandwidth. The scaled and the unscaled kerneleted by
K, (x)= IH "% K (H ‘%x) andK is a symmetric probability density function.

A bandwidth matrix includes all simpler cases psctal cases. Epanechnikov [5] proposed a multterkernel density
estimate in which different bandwidths were sugeg$or each of the coordinate directions. An edpaaddwidth in all direction,

suggested by [2], as in (1.1) correspond$to= h?| 4 Wwherel ; denotes thed xd identity matrix.

Using the parameterizatiodH = h?| 4 )» [2] gave the multivariate kernel density estionats

flxiH )= — IZ;K(x—xl) (1.2)

nh ¢
To use the parameterizatiop & h?,) effectively the components of the data vectonutthde commensurate. This, according to

[4, 14, 16], can be achieved if the data are tanséd. If this is done, there will be no need te asnore complicated form of the
kernel density estimator rather than the form imig a single bandwidth as in (1.2).
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Since the works of [6, 10, 11] have shown thatdvethtes of convergence can be obtained when higitar forms of the
univariate kernel density estimator are considetieeh the issue of higher order forms (as it affébe rates of convergence) in
multivariate kernel density estimator becomesishaes we tackled in this paper. Section 2 desstiee

optimal bandwidth hAM,SE) and asymptotic mean integrated squared error @®lifor the second order multivariate case.

Section 3 is dedicated to the higher order germmdloptimal bandwidth and the asymptotic mean rated squared error, while
section 4 contains the conclusion.

1. The optimal bandwidth and the generalized AMISE for the second order mitivariate kernels.

One of the most used measures on the globatamcof (1.2) is the mean integrated squared €MOSE). The derivation
of the multivariate MISE is analogous to the onexglisional case. The MISE is given as

MISEf(x;H):E[I(f(x;H)—f(x;H))de} (2.1)

= Ibiasz(f (o H ) Jax + [ var{f (x; H ) oix
Since the MISE does not have a closed form, exiédpé target densityf is a normal mixture and the choice of K is also

normal, see [15], findindH = is generally very difficult. However, an easy wayt is to find a tractable approximation to

the MISE. The Asymptotic Mean Integrated SquaredHAMISE) can be calculated as
AMISE f(x;H) = AISBF (x; H )+ AIV (T (x; H)) 2.2)

Another problem of MISE and AMISE is that they depeon the bandwidth in a very complicated way thgrmaking it
difficult to interpret the influence of the bandwhidon the performance of the kernel density estomafThese approximations
have very simple expressions that allow a deepereafation of the role of the bandwidth, this isilile in the variance-bias
trade-off. In addition to the aforementioned istttieey can also be used to obtain the rate of agevee in kernel density
estimation and MISE-Optimal bandwidth.

An asymptotic approximation of MISE througte tmultivariate Taylor series expansion &f around X and using the

assumptions
] [ K(w)dw =1
i. IWK dW 0 and
:uz(K )v =]
i v, K (w)ow = Ha = (2.3)
0, i#]
i,j=12,...,d
yields a simpler version of MISE for the multivdag&kernel as
AmISE (7 (xH))= T(K|) 411 V' [tr?(HD 2 (x)pix (2.4)
where R I K dW and D? f( ) is the Hessian matrix with respectXa

Now, in the caseH = h? | 4, equation (2.4) becomes
0 R(K) 1 2vaf (o2
amisE (f(x;H))= + s (K ) [ (@21 (x)bx (2.5)

The equation (2.5) is called the asymptotlc MISE:eut provides a useful large sample approximatiche MISE.
By minimizing (2.5) over h, and solving for [15] obtained the asymptotic optimal bandwidth déimel minimum AMISE of
order2 respectively as:

h { dn'R(K) o (2.6)
opt ) ’

#o (K) [ (071 (x)

and

avise (F(x;H))= [d +4J[/,12(K ¥ (R (x )4)([ @2t (x)) dx)n k 2.7)
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1 d

Observe that the rates of convergence is of orﬁ@ for the optimal bandwidth anﬂ_m for the minimum AMISE.
In the next section , we shall generalizé)and (2.7) which is an improvement to the theogarman by [15].
2. Theorem: Assuming that the multivariate kernels satisfyfilowing moment conditions

] de K (w)dw =1
i, _[Rd WK (w)dw = IRd ww K (w)dw = _[Rd (WWT )m_le K(w)dw =0, and  (3.0)
i _[Rd (WWT)mK(W)dW:,UZmId,for m=12,..<o.
where/t,,(K) is the (2m)" central moment ok (that is £, (K ) = [ W™K (w)dw ), and ~supposd is differentiable

and that the multivariate kernel is of order 2nerttior a general multivariate kernel estimator X pdrameterized byH = h| dr

the optimal bandwidth and the global error is givespectively as;
1

1 2

Do {[Mj@d“”}*"R(K)Mum(K)""‘”([(sz(x))mdx%1 e

4m

® avise (fA(X:h)):{ dram } 0R (K )*" 1, (K (] 021 () " noem e
(@m)y @mym Jins [ ! )
wherem=12,...,< .

Proof:
Recall that;

E(F(x H))= ], K (x=y)f (v)ay
= .[Rd K (w)f (x -H %W)dW 3.1)

By conditions (i) — (iii) in (3.0) and taking thégher Taylor expansion of (X -H %) in (3.1) and then substituting into (2.2), we
obtained the asymptotic integrated squared biaSEABS:

A|SB(f(x; H )):LyZm(K)thr ((H %D2f (x)H %)Zm)dx (3.2)

(em})y

Also, the asymptotic integrated variance (AlV) this case is

: R(K)
AIVITIXH)|=—— 3.3

(FoaH)) v (3.3)

The combination of (3.2) and (3.3) giv(es)
(. _ R(K 1 2 % ¥ |2m .
AISB(f (X, H))— n|H 7t ((2m)!)2 :uZm(K) J.Rd tr(H sz(X)H ) dx , and since
H =h’l, we obtain,
£(y- _ R(K) 1 2, 4m 2m

AMISE(f(x,H))_ L +((2m)!)2 (SR @ (x)f"dx  (3.9)

Hence the approximately higher-order optimal baithwiin the sense of minimizing equation (3.4),dmes

((;:)")2 h4m-1hd+1y2m(K)2de (sz (x))2m dx = dn*R(K)
or
1
ne = ™0 w00y ) [, (10 ] m wve
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Substituting (3.5) into (3.4) and with some algébraanipulation, we obtained

Y e am (AR (K ))'™ pram (K > }imee g )

(@myyy (am)n fs (L, @2 (fmax) n-en

Equation (3.5) and (3.6) are the generalized asgticpoptimal bandwidth and asymptotic mean integpasquare error
respectively of order 2mm=12,...< oo .

amise (f (x;h))=

4. Conclusion.

Equations (3.5) and (3.6) provide theoretical rsstdr the generalized optimal and asymptotic meaegrated square error
(AMISE) of order 2m. It is clear that these resyits. (3.5) and (3.6) enable one to find the optifmandwidth and AMISE of
symmetric multivariate kernels of any order. Weoadbserve that the optimal bandwidth as showr8if)(converges to zero at

1

“amed 1
the raten ™ which is faster than that of order @ of [15] (see, page 99 of cited reference).
4m 4
Moreover, the convergence rate of " was obtained for the generalized AMISE which stda than that of orde " of [15]
(see page 100 of cited reference). However, thetss of convergence are still very slow comparati¢ainivariate case, see [14].
These rates become slower as the dimension insredseh is as a result of the curse of dimensitydiscussed in [8, 13, 15].
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